149 research outputs found

    A new algebraic approach to genome rearrangement models

    Full text link
    We present a unified framework for modelling genomes and their rearrangements in a genome algebra, as elements that simultaneously incorporate all physical symmetries. Building on previous work utilising the group algebra of the symmetric group, we explicitly construct the genome algebra for the case of unsigned circular genomes with dihedral symmetry and show that the maximum likelihood estimate (MLE) of genome rearrangement distance can be validly and more efficiently performed in this setting. We then construct the genome algebra for the general case, that is, for genomes represented by elements of an arbitrary group and symmetry group, and show that the MLE computations can be performed entirely within this framework. There is no prescribed model in this framework; that is, it allows any choice of rearrangements with arbitrary weights. Further, since the likelihood function is built from path probabilities -- a generalisation of path counts -- the framework may be utilised for any distance measure that is based on path probabilities.Comment: 35 page

    On equal-input and monotone Markov matrices

    Full text link
    The classes of equal-input and of monotone Markov matrices are revisited, with special focus on embeddability, infinite divisibility, and mutual relations. Several uniqueness results for the embedding problem are obtained in the process. We employ various algebraic and geometric tools, including commutativity, permutation invariance and convexity. Of particular relevance in several demarcation results are Markov matrices that are idempotents.Comment: 30 page

    Lie Markov models with purine/pyrimidine symmetry

    Get PDF
    Continuous-time Markov chains are a standard tool in phylogenetic inference. If homogeneity is assumed, the chain is formulated by specifying time-independent rates of substitutions between states in the chain. In applications, there are usually extra constraints on the rates, depending on the situation. If a model is formulated in this way, it is possible to generalise it and allow for an inhomogeneous process, with time-dependent rates satisfying the same constraints. It is then useful to require that there exists a homogeneous average of this inhomogeneous process within the same model. This leads to the definition of "Lie Markov models", which are precisely the class of models where such an average exists. These models form Lie algebras and hence concepts from Lie group theory are central to their derivation. In this paper, we concentrate on applications to phylogenetics and nucleotide evolution, and derive the complete hierarchy of Lie Markov models that respect the grouping of nucleotides into purines and pyrimidines -- that is, models with purine/pyrimidine symmetry. We also discuss how to handle the subtleties of applying Lie group methods, most naturally defined over the complex field, to the stochastic case of a Markov process, where parameter values are restricted to be real and positive. In particular, we explore the geometric embedding of the cone of stochastic rate matrices within the ambient space of the associated complex Lie algebra. The whole list of Lie Markov models with purine/pyrimidine symmetry is available at http://www.pagines.ma1.upc.edu/~jfernandez/LMNR.pdf.Comment: 32 page

    Tensor Rank, Invariants, Inequalities, and Applications

    Full text link
    Though algebraic geometry over C\mathbb C is often used to describe the closure of the tensors of a given size and complex rank, this variety includes tensors of both smaller and larger rank. Here we focus on the n×n×nn\times n\times n tensors of rank nn over C\mathbb C, which has as a dense subset the orbit of a single tensor under a natural group action. We construct polynomial invariants under this group action whose non-vanishing distinguishes this orbit from points only in its closure. Together with an explicit subset of the defining polynomials of the variety, this gives a semialgebraic description of the tensors of rank nn and multilinear rank (n,n,n)(n,n,n). The polynomials we construct coincide with Cayley's hyperdeterminant in the case n=2n=2, and thus generalize it. Though our construction is direct and explicit, we also recast our functions in the language of representation theory for additional insights. We give three applications in different directions: First, we develop basic topological understanding of how the real tensors of complex rank nn and multilinear rank (n,n,n)(n,n,n) form a collection of path-connected subsets, one of which contains tensors of real rank nn. Second, we use the invariants to develop a semialgebraic description of the set of probability distributions that can arise from a simple stochastic model with a hidden variable, a model that is important in phylogenetics and other fields. Third, we construct simple examples of tensors of rank 2n−12n-1 which lie in the closure of those of rank nn.Comment: 31 pages, 1 figur
    • …
    corecore