13,302 research outputs found
GALAXY DYNAMICS IN CLUSTERS
We use high resolution simulations to study the formation and distribution of
galaxies within a cluster which forms hierarchically. We follow both dark
matter and baryonic gas which is subject to thermal pressure, shocks and
radiative cooling. Galaxy formation is identified with the dissipative collapse
of the gas into cold, compact knots. We examine two extreme representations of
galaxies during subsequent cluster evolution --- one purely gaseous and the
other purely stellar. The results are quite sensitive to this choice.
Gas-galaxies merge efficiently with a dominant central object while
star-galaxies merge less frequently. Thus, simulations in which galaxies remain
gaseous appear to suffer an ``overmerging'' problem, but this problem is much
less severe if the gas is allowed to turn into stars. We compare the kinematics
of the galaxy population in these two representations to that of dark halos and
of the underlying dark matter distribution. Galaxies in the stellar
representation are positively biased (\ie over-represented in the cluster) both
by number and by mass fraction. Both representations predict the galaxies to be
more centrally concentrated than the dark matter, whereas the dark halo
population is more extended. A modest velocity bias also exists in both
representations, with the largest effect, , found for the more massive star-galaxies. Phase diagrams show that the
galaxy population has a substantial net inflow in the gas representation, while
in the stellar case it is roughly in hydrostatic equilibrium. Virial mass
estimators can underestimate the true cluster mass by up to a factor of 5. The
discrepancy is largest if only the most massive galaxies are used, reflecting
significant mass segregation.Comment: 30 pages, self-unpacking (via uufiles) postscript file without
figures. Eighteen figures (and slick color version of figure 3) and entire
paper available at ftp://oahu.physics.lsa.umich.edu/groups/astro/fews Total
size of paper with figures is ~9.0 Mb uncompressed. Submitted to Ap.J
Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism
Using a new grism at the Keck Interferometer, we obtained spectrally
dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These
data show that the measured radius of the emission varies substantially from
2.0-2.4 microns. Simple models can reproduce these wavelength-dependent
variations using extended molecular layers, which absorb stellar radiation and
re-emit it at longer wavelengths. Because we observe spectral regions with and
without substantial molecular opacity, we determine the stellar photospheric
radius, uncontaminated by molecular emission. We infer that most of the
molecular opacity arises at approximately twice the radius of the stellar
photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ
Two roles of relativistic spin operators
Operators that are associated with several important quantities, like angular
momentum, play a double role: they are both generators of the symmetry group
and ``observables.'' The analysis of different splittings of angular momentum
into "spin" and "orbital" parts reveals the difference between these two roles.
We also discuss a relation of different choices of spin observables to the
violation of Bell inequalities.Comment: RevTeX 4, 4 pages A discussion on relation of different choices of
spin observables to the observed violation of Bell inequalities is added,
some misprints corrected and the presentation is clarifie
Satellites of the largest Kuiper Belt objects
We have searched the four brightest objects in the Kuiper Belt for the presence of satellites using the newly commissioned Keck Observatory Laser Guide Star Adaptive Optics system. Satellites are seen around three of the four objects: Pluto (whose satellite Charon is well-known and whose recently discovered smaller satellites are too faint to be detected), 2003 EL61 (where a second satellite is seen in addition to the previously known satellite), and 2003 UB313 (where a satellite is seen for the first time). The object 2005 FY9, the brightest Kuiper Belt object (KBO) after Pluto, does not have a satellite detectable within 0".4 with a brightness of more than 1% of the primary. The presence of satellites around three of the four brightest KBOs is inconsistent with the fraction of satellites in the Kuiper Belt at large at the 99.2% confidence level, suggesting a different formation mechanism for these largest KBO satellites. The two satellites of 2003 EL61, and the one satellite of 2003 UB313, with fractional brightnesses of 5% and 1.5%, and 2%, of their primaries, respectively, are significantly fainter relative to their primaries than other known KBO satellites, again pointing to possible differences in their origin
A structural evaluation of the tungsten isotopes via thermal neutron capture
Total radiative thermal neutron-capture -ray cross sections for the
W isotopes were measured using guided neutron beams from
the Budapest Research Reactor to induce prompt and delayed rays from
elemental and isotopically-enriched tungsten targets. These cross sections were
determined from the sum of measured -ray cross sections feeding the
ground state from low-lying levels below a cutoff energy, E, where
the level scheme is completely known, and continuum rays from levels
above E, calculated using the Monte Carlo statistical-decay code
DICEBOX. The new cross sections determined in this work for the tungsten
nuclides are: b and
b;
b and b; b and
b; and,
b and b. These results are consistent with
earlier measurements in the literature. The W cross section was also
independently confirmed from an activation measurement, following the decay of
W, yielding values for that are consistent
with our prompt -ray measurement. The cross-section measurements were
found to be insensitive to choice of level density or photon strength model,
and only weakly dependent on E. Total radiative-capture widths
calculated with DICEBOX showed much greater model dependence, however, the
recommended values could be reproduced with selected model choices. The decay
schemes for all tungsten isotopes were improved in these analyses.Comment: 25 pages, 15 figures, 15 table
Measurements of Lifetimes and a Limit on the Lifetime Difference in the Neutral D-Meson System
Using the large hadroproduced charm sample collected in experiment E791 at
Fermilab, we report the first directly measured constraint on the decay-width
difference Delta Gamma for the mass eigenstates of the D0-D0bar system. We
obtain our result from lifetime measurements of the decays D0 --> K-pi+ and D0
--> K-K+, under the assumption of CP invariance, which implies that the CP
eigenstates and the mass eigenstates are the same. The lifetime of D0 --> K-K+
(the CP-even final state is \tau_KK = 0.410 +/- 0.011 +/- 0.006 ps, and the
lifetime of D0 --> K-pi+ (an equal mixture of CP-odd and CP-even final states
is tau_Kpi = 0.413 +/- 0.003 +/- 0.004 ps. The decay-width difference is Delta
Gamma = 2(Gamma_KK - Gamma_Kpi) = 0.04 +/- 0.14 +/- 0.05 ps^-1. We relate these
measurements to measurements of mixing in the neutral D-meson system.Comment: 8 pages + 3 figures + 2 table
Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL_(61)
The newly commissioned laser guide star adaptive optics system at Keck Observatory has been used to discover and characterize the orbit of a satellite to the bright Kuiper Belt object 2003 EL_(61). Observations over a 6 month period show that the satellite has a semimajor axis of 49,500 ± 400 km, an orbital period of 49.12 ± 0.03 days, and an eccentricity of 0.050 ± 0.003. The inferred mass of the system is (4.2 ± 0.1) × 10^(21) kg, or ~32% of the mass of Pluto and 28.6% ± 0.7% of the mass of the Pluto-Charon system. Mutual occultations occurred in 1999 and will not occur again until 2138. The orbit is fully consistent neither with one tidally evolved from an earlier closer configuration nor with one evolved inward by dynamical friction from an earlier more distant configuration
Possible Metal/Insulator Transition at B=0 in Two Dimensions
We have studied the zero magnetic field resistivity of unique high- mobility
two-dimensional electron system in silicon. At very low electron density (but
higher than some sample-dependent critical value,
cm), CONVENTIONAL WEAK LOCALIZATION IS OVERPOWERED BY A SHARP DROP OF
RESISTIVITY BY AN ORDER OF MAGNITUDE with decreasing temperature below 1--2 K.
No further evidence for electron localization is seen down to at least 20 mK.
For , the sample is insulating. The resistivity is empirically
found to SCALE WITH TEMPERATURE BOTH BELOW AND ABOVE WITH A SINGLE
PARAMETER which approaches zero at suggesting a metal/ insulator
phase transition.Comment: 10 pages; REVTeX v3.0; 3 POSTSCRIPT figures available upon request;
to be published in PRB, Rapid Commu
Automating Deductive Verification for Weak-Memory Programs
Writing correct programs for weak memory models such as the C11 memory model
is challenging because of the weak consistency guarantees these models provide.
The first program logics for the verification of such programs have recently
been proposed, but their usage has been limited thus far to manual proofs.
Automating proofs in these logics via first-order solvers is non-trivial, due
to reasoning features such as higher-order assertions, modalities and rich
permission resources. In this paper, we provide the first implementation of a
weak memory program logic using existing deductive verification tools. We
tackle three recent program logics: Relaxed Separation Logic and two forms of
Fenced Separation Logic, and show how these can be encoded using the Viper
verification infrastructure. In doing so, we illustrate several novel encoding
techniques which could be employed for other logics. Our work is implemented,
and has been evaluated on examples from existing papers as well as the Facebook
open-source Folly library.Comment: Extended version of TACAS 2018 publicatio
- …