8 research outputs found

    Wavelet Analysis in Virtual Colonoscopy

    Get PDF
    The computed tomographic colonography (CTC) computer aided detection (CAD) program is a new method in development to detect colon polyps in virtual colonoscopy. While high sensitivity is consistently achieved, additional features are desired to increase specificity. In this paper, a wavelet analysis was applied to CTCCAD outputs in an attempt to filter out false positive detections. 52 CTCCAD detection images were obtained using a screen capture application. 26 of these images were real polyps, confirmed by optical colonoscopy and 26 were false positive detections. A discrete wavelet transform of each image was computed with the MATLAB wavelet toolbox using the Haar wavelet at levels 1-5 in the horizontal, vertical and diagonal directions. From the resulting wavelet coefficients at levels 1-3 for all directions, a 72 feature vector was obtained for each image, consisting of descriptive statistics such as mean, variance, skew, and kurtosis at each level and orientation, as well as error statistics based on a linear predictor of neighboring wavelet coefficients. The vectors for each of the 52 images were then run through a support vector machine (SVM) classifier using ten-fold cross-validation training to determine its efficiency in distinguishing polyps from false positives. The SVM results showed 100% sensitivity and 51% specificity in correctly identifying the status of detections. If this technique were added to the filtering process of the CTCCAD polyp detection scheme, the number of false positive results could be reduced significantly

    Validating Pareto Optimal Operation Parameters of Polyp Detection Algorithms for CT Colonography

    Get PDF
    We evaluated a Pareto front-based multi-objective evolutionary algorithm for optimizing our CT colonography (CTC) computer-aided detection (CAD) system. The system identifies colonic polyps based on curvature and volumetric based features, where a set of thresholds for these features was optimized by the evolutionary algorithm. We utilized a two-fold cross-validation (CV) method to test if the optimized thresholds can be generalized to new data sets. We performed the CV method on 133 patients; each patient had a prone and a supine scan. There were 103 colonoscopically confirmed polyps resulting in 188 positive detections in CTC reading from either the prone or the supine scan or both. In the two-fold CV, we randomly divided the 133 patients into two cohorts. Each cohort was used to obtain the Pareto front by a multi-objective genetic algorithm, where a set of optimized thresholds was applied on the test cohort to get test results. This process was repeated twice so that each cohort was used in the training and testing process once. We averaged the two training Pareto fronts as our final training Pareto front and averaged the test results from the two runs in the CV as our final test results. Our experiments demonstrated that the averaged testing results were close to the mean Pareto front determined from the training process. We conclude that the Pareto front-based algorithm appears to be generalizable to new test data

    Hybrid Committee Classifier for a Computerized Colonic Polyp Detection System

    Get PDF
    We present a hybrid committee classifier for computer-aided detection (CAD) of colonic polyps in CT colonography (CTC). The classifier involved an ensemble of support vector machines (SVM) and neural networks (NN) for classification, a progressive search algorithm for selecting a set of features used by the SVMs and a floating search algorithm for selecting features used by the NNs. A total of 102 quantitative features were calculated for each polyp candidate found by a prototype CAD system. 3 features were selected for each of 7 SVM classifiers which were then combined to form a committee of SVMs classifier. Similarly, features (numbers varied from 10-20) were selected for 11 NN classifiers which were again combined to form a NN committee classifier. Finally, a hybrid committee classifier was defined by combining the outputs of both the SVM and NN committees. The method was tested on CTC scans (supine and prone views) of 29 patients, in terms of the partial area under a free response receiving operation characteristic (FROC) curve (AUC). Our results showed that the hybrid committee classifier performed the best for the prone scans and was comparable to other classifiers for the supine scans

    Prediction of Brain Tumor Progression Using Multiple Histogram Matched MRI Scans

    Get PDF
    In a recent study [1], we investigated the feasibility of predicting brain tumor progression based on multiple MRI series and we tested our methods on seven patients\u27 MRI images scanned at three consecutive visits A, B and C. Experimental results showed that it is feasible to predict tumor progression from visit A to visit C using a model trained by the information from visit A to visit B. However, the trained model failed when we tried to predict tumor progression from visit B to visit C, though it is clinically more important. Upon a closer look at the MRI scans revealed that histograms of MRI scans such as T1, T2, FLAIR etc taken at different times have slight shifts or different shapes. This is because those MRI scans are qualitative instead of quantitative so MRI scans taken at different times or by different scanners might have slightly different scales or have different homogeneities in the scanning region. In this paper, we proposed a method to overcome this difficulty. The overall goal of this study is to assess brain tumor progression by exploring seven patients\u27 complete MRI records scanned during their visits in the past two years. There are ten MRI series in each visit, including FLAIR, T1-weighted, post-contrast T1-weighted, T2-weighted and five DTI derived MRI volumes: ADC, FA, Max, Min and Middle Eigen Values. After registering all series to the corresponding DTI scan at the first visit, we applied a histogram matching algorithm to non-DTI MRI scans to match their histograms to those of the corresponding MRI scans at the first visit. DTI derived series are quantitative and do not require the histogram matching procedure. A machine learning algorithm was then trained using the data containing information from visit A to visit B, and the trained model was used to predict tumor progression from visit B to visit C. An average of 72% pixel-wise accuracy was achieved for tumor progression prediction from visit B to visit C

    Adjacent Slice Prostate Cancer Prediction to Inform MALDI Imaging Biomarker Analysis

    Get PDF
    Prostate cancer is the second most common type of cancer among men in US [1]. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. Proteomic biomarkers can improve upon these methods. MALDI molecular spectra imaging is used to visualize protein/peptide concentrations across biopsy samples to search for biomarker candidates. Unfortunately, traditional processing methods require histopathological examination on one slice of a biopsy sample while the adjacent slice is subjected to the tissue destroying desorption and ionization processes of MALDI. The highest confidence tumor regions gained from the histopathological analysis are then mapped to the MALDI spectra data to estimate the regions for biomarker identification from the MALDI imaging. This paper describes a process to provide a significantly better estimate of the cancer tumor to be mapped onto the MALDI imaging spectra coordinates using the high confidence region to predict the true area of the tumor on the adjacent MALDI imaged slice

    The Global Reach of HIV/AIDS: Science, Politics, Economics, and Research

    Full text link

    Prediction of brain tumor progression using a machine learning technique

    No full text
    A machine learning technique is presented for assessing brain tumor progression by exploring six patients\u27 complete MRI records scanned during their visits in the past two years. There are ten MRI series, including diffusion tensor image (DTI), for each visit. After registering all series to the corresponding DTI scan at the first visit, annotated normal and tumor regions were overlaid. Intensity value of each pixel inside the annotated regions were then extracted across all of the ten MRI series to compose a 10 dimensional vector. Each feature vector falls into one of three categories:normal, tumor, and normal but progressed to tumor at a later time. In this preliminary study, we focused on the trend of brain tumor progression during three consecutive visits, i.e., visit A, B, and C. A machine learning algorithm was trained using the data containing information from visit A to visit B, and the trained model was used to predict tumor progression from visit A to visit C. Preliminary results showed that prediction for brain tumor progression is feasible. An average of 80.9% pixel-wise accuracy was achieved for tumor progression prediction at visit C
    corecore