1,190 research outputs found

    Analysis on a mobile agent-based algorithm for network routing and management

    Get PDF
    Ant routing is a method for network routing in agent technology. Although its effectiveness and efficiency have been demonstrated and reported in the literature, its properties have not yet been well studied. This paper presents some preliminary analysis on an ant algorithm in regard to its population growing property and jumping behavior. Results conclude that as long as the value max, {i/spl Omega//sub j/|} is known, the practitioner is able to design the algorithm parameters, such as the number of agents being created for each request, k, and the maximum allowable number of jumps of an agent, in order to meet the network constraint.John Sum, Hong Shen, Chi-sing Leung, and G. Youn

    A chemical imaging and Nano-ARPES study of well-ordered thermally reduced SrTiO3(100)

    Full text link
    The structural and electronic properties of thermally reduced SrTiO3(100) single crystals have been investigated using a probe with real- and reciprocal-space sensitivity: a synchrotron radiation microsopic setup which offers the possibility of Scanning Photoemission Microscopy and Angle Resolved Photoelectron Spectroscopy (ARPES) down to the nanometric scale. We have spectroscopically imaged the chemical composition of samples which present reproducible and suitable low-energy electron diffraction patterns after following well-established thermal reduction protocols. At the micrometric scale, Ca-rich areas have been directly imaged using high-energy resolution core level photoemission. Moreover, we have monitored the effect of Ca segregation on different features of the SrTiO3(100) electronic band structure, measuring ARPES inside, outside and at the interface of surface inhomogeneities with the identified Ca-rich areas. In particular, the interaction of Ca with the well-known intragap localized state, previously attributed to oxygen vacancies, has been investigated. Moreover, the combination of direct imaging and spectroscopic techniques with high spatial resolution has clarified the long-standing dilemma related to the bulk or surface character of Ca segregation in SrTiO3. Our results present solid evidence that the penetration depth of Ca segregation is very small. In contrast to what has been previously proposed, the origin of long-range surface reconstructions can unlikely be associated to Ca due to strong local variations of its surface concentration.Comment: 7 pages, 6 figure

    Interfacial Mechanism for Efficient Resistive Switching in Ruddlesden-Popper Perovskites for Non-volatile Memories

    Get PDF
    Ion migration, one origin of current–voltage hysteresis, is the bane of halide perovskite optoelectronics. Herein, we leverage this unwelcome trait to unlock new opportunities for resistive switching using layered Ruddlesdsen–Popper perovskites (RPPs) and explicate the underlying mechanisms. The ON/OFF ratio of RPP-based devices is strongly dependent on the layers and peaks at n̅ = 5, demonstrating the highest ON/OFF ratio of ∼104 and minimal operation voltage in 1.0 mm2 devices. Long data retention even in 60% relative humidity and stable write/erase capabilities exemplify their potential for memory applications. Impedance spectroscopy reveals a chemical reaction between migrating ions and the external contacts to modify the charge transfer barrier at the interface to control the resistive states. Our findings explore a new family of facile materials and the necessity of ionic population, migration, and their reactivity with external contacts in devices for switching and memory applications

    Subtraction electrocardiography: Detection of ischemia-induced ST displacement without the need to identify the J point

    Get PDF
    AbstractBackgroundWhen triaging a patient with acute chest pain at first medical contact, an electrocardiogram (ECG) is routinely made and inspected for signs of myocardial ischemia. The guidelines recommend comparison of the acute and an earlier-made ECG, when available. No concrete recommendations for this comparison exist, neither is known how to handle J-point identification difficulties. Here we present a J-point independent method for such a comparison.MethodsAfter conversion to vectorcardiograms, baseline and acute ischemic ECGs after 3minutes of balloon occlusion during elective PCI were compared in 81 patients of the STAFF III ECG database. Baseline vectorcardiograms were subtracted from ischemic vectorcardiograms using either the QRS onsets or the J points as synchronization instants, yielding vector magnitude difference signals, ΔH. Output variables for the J-point synchronized differences were ΔH at the actual J point and at 20, 40, 60 and 80ms thereafter. Output variables for the onset-QRS synchronized differences were the ΔH at 80, 100, 120, 140 and 160ms after onset QRS. Finally, linear regressions of all combinations of ΔHJ+… versus ΔHQRS+… were made, and the best combination was identified.ResultsThe highest correlation, 0.93 (p<0.01), was found between ΔH 40ms after the J point and 160ms after the onset of the QRS complex. With a ΔH ischemia threshold of 0.05mV, 66/81 (J-point synchronized differences) and 68/81 (onset-QRS synchronized differences) subjects were above the ischemia threshold, corresponding to sensitivities of 81% and 84%, respectively.ConclusionOur current study opens an alternative way to detect cardiac ischemia without the need for human expertise for determination of the J point by measuring the difference vector magnitude at 160ms after the onset of the QRS complex

    Room Temperature Light-Mediated Long-Range Coupling of Excitons in Perovskites

    Full text link
    Perovskites have been the focus of attention due to their multitude of outstanding optoelectronic properties and structural versatility. Two-dimensional halide perovskite such as (C_6H_5C_2H_4NH_3)_2PbI_4, or simply PEPI, forms natural multiple quantum wells with enhanced light-matter interactions, making them attractive systems for further investigation. This work reports tunable splitting of exciton modes in PEPI resulting from strong light-matter interactions, manifested as multiple dips (modes) in the reflection spectra. While the origin of the redder mode is well understood, that for the bluer dip at room temperature is still lacking. Here, it is revealed that the presence of the multiple modes originates from an indirect coupling between excitons in different quantum wells. The long-range characteristic of the mediated coupling between excitons in distant quantum wells is also demonstrated in a structure design along with its tunability. Moreover, a device architecture involving an end silver layer enhances the two excitonic modes and provides further tunability. Importantly, this work will motivate the possibility of coupling of the excitonic modes with a confined light mode in a microcavity to produce multiple exciton-polariton modes.Comment: 12 pages, 11 figure

    Fluorophore-Doped Core-Multishell Spherical Plasmonic Nanocavities: Resonant Energy Transfer towards a Loss Compensation

    Get PDF
    Cataloged from PDF version of article.Plasmonics exhibits the potential to break the diffraction limit and bridge the gap between electronics and photonics by routing and manipulating light at the nanoscale. However, the inherent and strong energy dissipation present in metals, especially in the near-infrared and visible wavelength ranges, significantly hampersthe applications in nanophotonics. Therefore, it is amajor challengetomitigatethe losses. One way to compensate the losses is to incorporate gain media into plasmonics. Here, we experimentally show that the incorporation of gain material into a local surface plasmonic system (Au/silica/silica dye core multishell nanoparticles) leads to a resonant energy transfer from the gain media to the plasmon. The optimized conditions for the largest loss compensation are reported. Both the coupling distance and the spectral overlap arethe key factorsto determinetheresulting energy transfer. Theinterplay of these factors leadsto a non-monotonous photoluminescence dependence as a function of the silica spacer shell thickness. Nonradiativetransferrate is increased by morethan 3 orders of magnitude attheresonant condition, which is key evidence of the strongest coupling occurring between the plasmon and the gain material

    Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA

    Get PDF
    Background Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene. Methods Mosquitoes were collected, identified, dissected to check infection status, and DNA extraction was performed for PCR with primers targeting the ITS2 rDNA region. Sequencing was done and phylogenetic tree was constructed to study the evolutionary relationship among Anopheles mosquitoes within Peninsular Malaysia, as well as across the Asian region. Results A total of 133 Anopheles mosquitoes consisting of six different species were collected from eight different locations across Peninsular Malaysia. Of these, 65 ITS2 rDNA sequences were obtained. The ITS2 rDNA amplicons of the studied species were of different sizes. One collected species, Anopheles sinensis, shows two distinct pools of population in Peninsular Malaysia, suggesting evolvement of geographic race or allopatric speciation. Conclusion Anopheles mosquitoes from Peninsular Malaysia show close evolutionary relationship with the Asian anophelines. Nevertheless, genetic differences due to geographical segregation can be seen. Meanwhile, some Anopheles mosquitoes in Peninsular Malaysia show vicariance, exemplified by the emergence of distinct cluster of An. sinensis population

    Workplace Turbulence and Workforce Preparedness

    Get PDF
    The year 1973 marked a divide in the postwar economy.1 During the 25 years between 1948 and 1973, private sector productivity increased at an annual rate of 2.9%. Productivity improvement after 1973 fell way below this long-term trend, leveling off at about 0.6% a year until 1981 and rising to only 1.6% a year between 1981 and 1987. A similar pattern is reflected in the real wages of the workforce.2The conventional interpretation of this difference in the U.S. economy before and after 1973 is that it reflects the combined influence of the OPEC oil shock and the influx into the labor market of inexperienced workers born in the postwar baby boom, possibly reinforced by growth in regulatory costs.3 However, when the productivity data are analyzed in a growth accounting framework, these economic factors can only account for about two thirds of the productivity decline.4 What then explains the balance of the shortfall in productivity? Many analysts have pointed to the intangible effects on managers of increased economic uncertainty since 1973—growing business cautiousness, increased emphasis on short-term financial objectives, and inadequate entrepreneurial incentives.5 But economic change and uncertainty can also affect productivity through their impact on jobs and workers
    corecore