14 research outputs found
NMR and chiroptical examination of the diastereoisomers of (S)-Eu-EOB-DTPA
The solution structure of the diastereoisomers of (S)-Eu-EOB-DTPA has been analysed by H-1 NMR, CD and CPL spectroscopy. Two major species exist which possess very similar 1H NMR paramagnetic shifts and emission spectra, consistent with a 9-coordinate structure involving one bound water. Circularly polarised luminescence data are consistent with a common Lambda-helicity for each isomer; the isomers differ only in the absolute configuration of the central nitrogen atom
Fab MOR03268 triggers absorption shift of a diagnostic dye via packaging in a solvent-shielded Fab dimer interface
Molecular interactions between near-IR fluorescent probes and specific antibodies may be exploited to generate novel smart probes for diagnostic imaging. Using a new phage display technology, we developed such antibody Fab fragments with subnanomolar binding affinity for tetrasulfocyanine, a near-IR in vivo imaging agent. Unexpectedly, some Fabs induced redshifts of the dye absorption peak of up to 44 nm. This is the largest shift reported for a biological system so far. Crystal structure determination and absorption spectroscopy in the crystal in combination with microcalorimetry and small-angle X-ray scattering in solution revealed that the redshift is triggered by formation of a Fab dimer, with tetrasulfocyanine being buried in a fully closed protein cavity within the dimer interface. The derived principle of shifting the absorption peak of a symmetric dye via packaging within a Fab dimer interface may be transferred to other diagnostic fluorophores, opening the way towards smart imaging probes that change their wavelength upon interaction with an antibody