7 research outputs found
Exploring of the incompatibility of marine residual fuel: A case study using machine learning methods
Providing quality fuel to ships with reduced SOx content is a priority task. Marine residual fuels are one of the main sources of atmospheric pollution during the operation of ships and sea tankers. Hence, the International Maritime Organization (IMO) has established strict regulations for the sulfur content of marine fuels. One of the possible technological solutions allowing for adherence to the sulfur content limits is use of mixed fuels. However, it carries with it risks of ingredient incompatibilities. This article explores a new approach to the study of active sedimentation of residual and mixed fuels. An assessment of the sedimentation process during mixing, storage, and transportation of marine fuels is made based on estimation three-dimensional diagrams developed by the authors. In an effort to find the optimal solution, studies have been carried out to determine the influence of marine residual fuel compositions on sediment formation via machine learning algorithms. Thus, a model which can be used to predict incompatibilities in fuel compositions as well as sedimentation processes is proposed. The model can be used to determine the sediment content of mixed marine residual fuels with the desired sulfur concentration.publishedVersio
Manifestation of incompatibility of marine residual fuels: a method for determining compatibility, studying composition of fuels and sediment
The results of studying the problem of active sediment formation when mixing residual fuels, caused by manifestation of incompatibility, are presented. A laboratory method has been developed for determining the compatibility and stability of fuels allowing identification of a quantitative characteristic of sediment formation activity. Laboratory studies were performed, and incompatible fuel components were identified. Tests were made to determine the quality indicators of samples and group individual composition of fuels. Results on the content of total and inorganic carbon in the obtained sediments were determined using Shimadzu TOC-V SSM 5000A. Chemical composition was determined and calculated on LECO CHN-628 analyser. Group composition of hydrocarbon fuels contained in the sediment was studied by gas chromato-mass spectrometry on GCMS-QP2010 Ultra Shimadzu. To obtain additional information on the structural group composition of fuel sediment, IR spectrometry was performed on IR-Fourier spectrometer IRAffinity-1. X-ray diffraction analysis of sediment samples was made using X-ray diffractometer XRD-7000 Shimadzu; interplanar distances d002 and d100 as well as Lс and Lа crystallite sizes served as the evaluation criteria. Microstructural analysis of total sediment was performed by scanning electron microscopy. The results of the research confirmed that the content of normal alkanes in the fuel mixture mainly affects sediment formation. Recommendations were drawn on preserving the quality of fuels and reducing sediment formation during storage and transportation
Research of the influence of marine residual fuel composition on sedimentation due to incompatibility
The article shows studies of the problem of active sediment formation during mixing of residual fuels, caused by the manifestation of incompatibility. To preserve the quality and reduce sediment formation during transshipment, storage, and transportation of marine residual fuels, a laboratory method for determining the compatibility and stability of fuels has been developed, which makes it possible to determine the quantitative characteristics of the sediment formation activity. According to the method developed, laboratory studies have been carried out to determine incompatible fuel components and the influence of composition on the sedimentation process. Tests were carried out to determine the quality indicators and the individual group composition of the fuel samples. Based on the results of the studies, the dependences of the influence of normal structure paraffins in the range from 55 to 70 wt. % and asphaltenes in the range from 0.5 to 3.5 wt. % in the fuel composition on the sedimentation activity due to incompatibility were obtained. To obtain a convenient tool that is applicable in practice, a nomogram has been developed on the basis of the dependences obtained experimentally. It was also determined that, after reaching the maximum values of sediment formation with a further increase in the content of n-paraffins, saturation is observed, and the value of the sediment content remains at the same level. Maximum total sediment values have been found to depend on asphaltene content and do not significantly exceed them within 10%. The results of the research presented in this article allow laboratory and calculation to determine the possibility of incompatibility and to preserve the quality of marine residual fuels.publishedVersio
Research of the Influence of Marine Residual Fuel Composition on Sedimentation Due to Incompatibility
The article shows studies of the problem of active sediment formation during mixing of residual fuels, caused by the manifestation of incompatibility. To preserve the quality and reduce sediment formation during transshipment, storage, and transportation of marine residual fuels, a laboratory method for determining the compatibility and stability of fuels has been developed, which makes it possible to determine the quantitative characteristics of the sediment formation activity. According to the method developed, laboratory studies have been carried out to determine incompatible fuel components and the influence of composition on the sedimentation process. Tests were carried out to determine the quality indicators and the individual group composition of the fuel samples. Based on the results of the studies, the dependences of the influence of normal structure paraffins in the range from 55 to 70 wt. % and asphaltenes in the range from 0.5 to 3.5 wt. % in the fuel composition on the sedimentation activity due to incompatibility were obtained. To obtain a convenient tool that is applicable in practice, a nomogram has been developed on the basis of the dependences obtained experimentally. It was also determined that, after reaching the maximum values of sediment formation with a further increase in the content of n-paraffins, saturation is observed, and the value of the sediment content remains at the same level. Maximum total sediment values have been found to depend on asphaltene content and do not significantly exceed them within 10%. The results of the research presented in this article allow laboratory and calculation to determine the possibility of incompatibility and to preserve the quality of marine residual fuels
The influence of total sediment of petroleum products on the corrosiveness of the metal of the tanks during storage
Storage tanks for petroleum products must comply with the requirements of technical, technological and environmental safety. The corrosion rate increases with prolonged storage of petroleum products in tanks. To prevent the destruction processes for reliable operation of tanks caused by metal corrosion some solutions are needed. Active formation of general sludge occurs in the storage of fuel oil, which contains corrosion-active substances, because of the incompatibility of fuels. The paper assesses the effect of total oil sludge in tanks on the corrosion process and on the reliability of tanks. Studies of the formation of a common sediment caused by incompatibility when mixing petroleum products are conducted. The paper proposes a solution which allows to reduce the formation of total oil sludge and to ensure reliable operation of reservoirs
Reduction of Sulphur in Marine Residual Fuels by Deasphalting to Produce VLSFO
This paper presents the results of the controlled sedimentation process for deasphalting, caused by targeted formation of the fuel dispersed system components incompatibility (proportion of the paraffins with normal structure increase) experimental investigations. The main purpose was to decrease the contained amount of sulphur in sedentary marine fuel and procure VLSFO. Developed and given account of the laboratorial method of instituting the sediment which modifies standard TSP and allows to control the deasphalting with the take-off of sediment and deasphaltisate for future analysis. In this case, 5 components of marine fuels, their basic physical and chemical properties, and chemical group composition were used as an object of study. Based on the data obtained and via use of worked out software package, 6 compositions of marine fuels were specified. Furthermore, they were then produced and their quality attributes were defined. The results show that the deasphalting caused by the components targeted incompatibility is accompanied by the desulphurization. Sulphur concentration took place in the sediment where its content was 4.5 times higher than in composite fuel. At the same time, sediment content fell from 0.9% to 1.02% by weight according to the fuel composition. The sulphur content in the resulting deasphaltisate declined by approximately 15% in relation to original fuel mix, moreover, other quality indicators improved. In order to find out whether the usage of sediment obtained is possible, its composition and structure were assessed. The results of the interpretation showed, that sediments were inclined to bitumens, which allows them to be mixed with sediments as a way to cut process waste. Targeted deasphalting makes it possible for the expenses on reducing sulphur containment in marine residual fuels to be decreased, which expands the opportunities of fuels application according to ISO 8217:2017
Exploring of the incompatibility of marine residual fuel: A case study using machine learning methods
Providing quality fuel to ships with reduced SOx content is a priority task. Marine residual fuels are one of the main sources of atmospheric pollution during the operation of ships and sea tankers. Hence, the International Maritime Organization (IMO) has established strict regulations for the sulfur content of marine fuels. One of the possible technological solutions allowing for adherence to the sulfur content limits is use of mixed fuels. However, it carries with it risks of ingredient incompatibilities. This article explores a new approach to the study of active sedimentation of residual and mixed fuels. An assessment of the sedimentation process during mixing, storage, and transportation of marine fuels is made based on estimation three-dimensional diagrams developed by the authors. In an effort to find the optimal solution, studies have been carried out to determine the influence of marine residual fuel compositions on sediment formation via machine learning algorithms. Thus, a model which can be used to predict incompatibilities in fuel compositions as well as sedimentation processes is proposed. The model can be used to determine the sediment content of mixed marine residual fuels with the desired sulfur concentration