20 research outputs found

    High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil

    Get PDF
    When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south central Indiana, USA, to quantify how transpiration and photosynthesis respond to fluctuations in VPD versus SWC. High VPD and low SWC both explained reductions in photosynthesis relative to its long-term mean, as well as reductions in transpiration relative to potential transpiration estimated with the Penman-Monteith equation. Flux responses to typical fluctuations in SWC and VPD had similar magnitudes. Integrated over the year, VPD fluctuations accounted for significant reductions of GPP in both nondrought and drought years. Our results suggest that increasing VPD under climatic warming could reduce forest CO2 uptake regardless of changes in SWC

    Land Use and Land Cover Affect the Depth Distribution of Soil Carbon: Insights From a Large Database of Soil Profiles

    Get PDF
    Soils contain a large and dynamic fraction of global terrestrial carbon stocks. The distribution of soil carbon (SC) with depth varies among ecosystems and land uses and is an important factor in calculating SC stocks and their vulnerabilities. Systematic analysis of SC depth distributions across databases of SC profiles has been challenging due to the heterogeneity of soil profile measurements, which vary in depth sampling. Here, we fit over 40,000 SC depth profiles to an exponential decline relationship with depth to determine SC concentration at the top of the mineral soil, minimum SC concentration at depth, and the characteristic “length” of SC concentration decline with depth. Fitting these parameters allowed profile characteristics to be analyzed across a large and heterogeneous dataset. We then assessed the differences in these depth parameters across soil orders and land cover types and between soil profiles with or without a history of tillage, as represented by the presence of an Ap horizon. We found that historically tilled soils had more gradual decreases of SC with depth (greater e-folding depth or Z∗), deeper SC profiles, lower SC concentrations at the top of the mineral soil, and lower total SC stocks integrated to 30 cm. The large database of profiles allowed these results to be confirmed across different land cover types and spatial areas within the Continental United States, providing robust evidence for systematic impacts of historical tillage on SC stocks and depth distributions

    Divergent controls of soil organic carbon between observations and process-based models

    Full text link
    The storage and cycling of soil organic carbon (SOC) are governed by multiple co-varying factors, including climate, plant productivity, edaphic properties, and disturbance history. Yet, it remains unclear which of these factors are the dominant predictors of observed SOC stocks, globally and within biomes, and how the role of these predictors varies between observations and process-based models. Here we use global observations and an ensemble of soil biogeochemical models to quantify the emergent importance of key state factors – namely, mean annual temperature, net primary productivity, and soil mineralogy – in explaining biome- to global-scale variation in SOC stocks. We use a machine-learning approach to disentangle the role of covariates and elucidate individual relationships with SOC, without imposing expected relationships a priori. While we observe qualitatively similar relationships between SOC and covariates in observations and models, the magnitude and degree of non-linearity vary substantially among the models and observations. Models appear to overemphasize the importance of temperature and primary productivity (especially in forests and herbaceous biomes, respectively), while observations suggest a greater relative importance of soil minerals. This mismatch is also evident globally. However, we observe agreement between observations and model outputs in select individual biomes – namely, temperate deciduous forests and grasslands, which both show stronger relationships of SOC stocks with temperature and productivity, respectively. This approach highlights biomes with the largest uncertainty and mismatch with observations for targeted model improvements. Understanding the role of dominant SOC controls, and the discrepancies between models and observations, globally and across biomes, is essential for improving and validating process representations in soil and ecosystem models for projections under novel future conditions

    SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0

    Get PDF
    Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Synthesizing datasets collected by different research networks presents opportunities to expand the ecological gradients and scientific breadth of information available for inquiry. Synthesizing these data is challenging, especially considering the legacy of soil data that have already been collected and an expansion of new network science initiatives. To facilitate this effort, here we present the SOils DAta Harmonization database (SoDaH; https://lter.github.io/som-website, last access: 22 December 2020), a flexible database designed to harmonize diverse SOM datasets from multiple research networks. SoDaH is built on several network science efforts in the United States, but the tools built for SoDaH aim to provide an open-access resource to facilitate synthesis of soil carbon data. Moreover, SoDaH allows for individual locations to contribute results from experimental manipulations, repeated measurements from long-term studies, and local- to regional-scale gradients across ecosystems or landscapes. Finally, we also provide data visualization and analysis tools that can be used to query and analyze the aggregated database. The SoDaH v1.0 dataset is archived and available at https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 (Wieder et al., 2020)

    Subsurface Redox Interactions Regulate Ebullitive Methane Flux in Heterogeneous Mississippi River Deltaic Wetland

    No full text
    Abstract As interfaces connecting terrestrial and ocean ecosystems, coastal wetlands develop temporally and spatially complex redox conditions, which drive uncertainties in greenhouse gas emission as well as the total carbon budget of the coastal ecosystem. To evaluate the role of complex redox reactions in methane emission from coastal wetlands, a coupled reactive‐transport model was configured to represent subsurface biogeochemical cycles of carbon, nitrogen, and sulfur, along with production and transport of multiple gas species through diffusion and ebullition. This model study was conducted at multiple sites along a salinity gradient in the Barataria Basin at the Mississippi River Deltaic Plain. Over a freshwater to saline gradient, simulated total flux of methane was primarily controlled by its subsurface production and consumption, which were determined by redox reactions directly (e.g., methanogenesis, methanotrophy) and indirectly (e.g., competition with sulfate reduction) under aerobic and/or anaerobic conditions. At fine spatiotemporal scales, surface methane fluxes were also strongly dependent on transport processes, with episodic ebullitive fluxes leading to higher spatial and temporal variability compared to the gradient‐driven diffusion flux. Ebullitive methane fluxes were determined by methane fraction in total ebullitive gas and the frequency of ebullitive events, both of which varied with subsurface methane concentrations and other gas species. Although ebullition thresholds are constrained by local physical factors, this study indicates that redox interactions not only determine gas composition in ebullitive fluxes but can also regulate ebullition frequency through gas production

    Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models.

    No full text
    Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models that can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0-100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, temperature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temperature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. By providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about factors regulating the turnover of soil organic matter

    Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models.

    No full text
    Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models that can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0-100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, temperature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temperature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. By providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about factors regulating the turnover of soil organic matter
    corecore