2 research outputs found

    The dual nature of magnetism in a uranium heavy fermion system

    Get PDF
    The duality between localized and itinerant nature of magnetism in 5f5\textit{f} electron systems has been a longstanding puzzle. Here, we report inelastic neutron scattering measurements, which reveal both local and itinerant aspects of magnetism in a single crystalline system of UPt2_{2}Si2_{2}. In the antiferromagnetic state, we observe broad continuum of diffuse magnetic scattering with a resonance-like gap of ≈\approx 7 meV, and surprising absence of coherent spin-waves, suggestive of itinerant magnetism. While the gap closes above the Neel temperature, strong dynamic spin correlations persist to high temperature. Nevertheless, the size and temperature dependence of the total magnetic spectral weight can be well described by local moment with J=4J=4. Furthermore, polarized neutron measurements reveal that the magnetic fluctuations are mostly transverse, with little or none of the longitudinal component expected for itinerant moments. These results suggest that a dual description of local and itinerant magnetism is required to understand UPt2_{2}Si2_{2}, and by extension, other 5ff systems in general.Comment: see supplementary material for more detail

    Dual Nature of Magnetism in a Uranium Heavy-Fermion System

    Get PDF
    The duality between the localized and itinerant nature of magnetism in 5f-electron systems has been a long-standing puzzle. Here, we report inelastic neutron scattering measurements, which reveal both local and itinerant aspects of magnetism in a single-crystalline system of UPt2Si2. In the antiferromagnetic state, we observe a broad continuum of diffuse magnetic scattering with a resonancelike gap of ≈7 meV and the surprising absence of coherent spin waves, suggestive of itinerant magnetism. While the gap closes above the N´eel temperature, strong dynamic spin correlations persist to a high temperature. Nevertheless, the size and temperature dependence of the total magnetic spectral weight can be well described by a local moment with J ¼ 4. Furthermore, polarized neutron measurements reveal that the magnetic fluctuations are mostly transverse, with little or none of the longitudinal component expected for itinerant moments. These results suggest that a dual description of local and itinerant magnetism is required to understand UPt2Si2 and, by extension, other 5f systems, in general. © 2018 American Physical Societ
    corecore