27,589 research outputs found

    Hybrid A/D converter for 200 deg C operation

    Get PDF
    A 12 bit A/D converter was designed and developed which will operate at 200 C with .05 linearity, 1/accuracy, 350 WSec conversion time, and only 455 mW power consumption. This product also necessitated the development of a unique three metal system in which aluminum wire bonding is done utilizing aluminum bonding pads, gold wire bonding to all gold areas, and employment of a nickel interface between gold and aluminum connections. This system totally eliminates the formation of a intermetallics at the bonding interface which can lead to bond failure. This product represents an advancement in electronics as it proved the operation of integrated circuits at high temperature, as well as providing information about both the electrical and mechanical reliability of hybrid circuits at 200 C

    A study of noise metric and tone correction accuracy

    Get PDF
    Methods currently used to measure human response to aircraft flyover noise were investigated. Response to high level aircraft noise usually experienced outdoors was obtained. Response to aircraft flyover noise typical of indoor exposure was also investigated. It was concluded that current methods for evaluating response to aircraft flyover are more accurate for outdoor noise

    Response to actual and simulated recordings of conventional takeoff and landing jet aircraft

    Get PDF
    Comparability between noise characteristics of synthesized recordings of aircraft in flight and actual recordings were investigated. Although the synthesized recordings were more smoothly time-varying than the actual recordings and the synthesizer could not produce a comb-filter effect that was present in the actual recordings, results supported the conclusion that annoyance response is comparable to the synthesized and actual recordings. A correction for duration markedly improved the validity of engineering calculation procedures designed to measure noise annoyance. Results led to the conclusion that the magnitude estimation psychophysical method was a highly reliable approach for evaluating engineering calculation procedures designed to measure noise annoyance. For repeated presentations of pairs of actual recordings, differences between judgment results for identical signals ranged from 0.0 to 0.5 db

    Coplanar constant mean curvature surfaces

    Full text link
    We consider constant mean curvature surfaces of finite topology, properly embedded in three-space in the sense of Alexandrov. Such surfaces with three ends and genus zero were constructed and completely classified by the authors in arXiv:math.DG/0102183. Here we extend the arguments to the case of an arbitrary number of ends, under the assumption that the asymptotic axes of the ends lie in a common plane: we construct and classify the entire family of these genus-zero coplanar constant mean curvature surfaces.Comment: 35 pages, 10 figures; minor revisions including one new figure; to appear in Comm. Anal. Geo

    Triunduloids: Embedded constant mean curvature surfaces with three ends and genus zero

    Full text link
    In 1841, Delaunay constructed the embedded surfaces of revolution with constant mean curvature (CMC); these unduloids have genus zero and are now known to be the only embedded CMC surfaces with two ends and finite genus. Here, we construct the complete family of embedded CMC surfaces with three ends and genus zero; they are classified using their asymptotic necksizes. We work in a class slightly more general than embedded surfaces, namely immersed surfaces which bound an immersed three-manifold, as introduced by Alexandrov.Comment: LaTeX, 22 pages, 2 figures (8 ps files); full version of our announcement math.DG/9903101; final version (minor revisions) to appear in Crelle's J. reine angew. Mat

    Constant mean curvature surfaces with three ends

    Full text link
    We announce the classification of complete, almost embedded surfaces of constant mean curvature, with three ends and genus zero: they are classified by triples of points on the sphere whose distances are the asymptotic necksizes of the three ends.Comment: LaTex, 4 pages, 1 postscript figur

    Shuttle electrical environment

    Get PDF
    Part of an AFGL payload flown on the STS-4 mission consisted of experiments to measure in-situ electric fields, electron densities, and vehicle charging. During this flight some 11 hours of data were acquired ranging from 5 minute snapshots up to continuous half-orbits. These experiments are described and results presented for such vehicle induced events as a main engine burn, thruster firings and water dumps in addition to undisturbed periods. The main characteristic of all the vehicle induced events is shown to be an enhancement in the low frequency noise (less than 2 kHz), in both the electrostatic and electron irregularity (delta N/N) spectra. The non-event results indicate that the electrostatic broadband emissions show a white noise characteristic in the low frequency range up to 2 kHz at an amplitude of 10 db above the shuttle design specification limit, falling below that limit above 10 kHz. The vehicle potential remained within the range of -3 to +1 volt throughout the flight which exhibits normal behavior for a satellite in a low equatorial orbit

    Application of magnitude estimation scaling to the assessment of subjective loudness response to simulated sonic booms

    Get PDF
    A laboratory study was conducted for the following reasons: (1) to investigate the application of magnitude estimation scaling for evaluating the subjective loudness of sonic booms; and (2) to compare the relative merits of magnitude estimation and numerical category scaling for sonic boom loudness evaluation. The study was conducted in the NASA LeRC's sonic boom simulator and used a total of 80 test subjects (48 for magnitude estimation and 32 for numerical category scaling). Results demonstrated that magnitude estimation was a practical and effective method for quantifying subjective loudness of sonic booms. When using magnitude estimation, the subjects made valid and consistent ratio judgments of sonic boom loudness irrespective of the frequency of presentation of the standard stimulus. Presentation of the standard as every fourth stimulus was preferred by the subjects and is recommended as the standard presentation frequency to be used in future tests

    A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    Get PDF
    We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations

    A thin rivulet or ridge subject to a uniform transverse\ud shear stress at its free surface due to an external airflow

    Get PDF
    We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations
    corecore