8,973 research outputs found

    Curves of Finite Total Curvature

    Full text link
    We consider the class of curves of finite total curvature, as introduced by Milnor. This is a natural class for variational problems and geometric knot theory, and since it includes both smooth and polygonal curves, its study shows us connections between discrete and differential geometry. To explore these ideas, we consider theorems of Fary/Milnor, Schur, Chakerian and Wienholtz.Comment: 25 pages, 4 figures; final version, to appear in "Discrete Differential Geometry", Oberwolfach Seminars 38, Birkhauser, 200

    Propertius Book IV: Themes and Structures

    Get PDF
    published or submitted for publicatio

    Equivalence of concentration inequalities for linear and non-linear functions

    Get PDF
    We consider a random variable XX that takes values in a (possibly infinite-dimensional) topological vector space X\mathcal{X}. We show that, with respect to an appropriate "normal distance" on X\mathcal{X}, concentration inequalities for linear and non-linear functions of XX are equivalent. This normal distance corresponds naturally to the concentration rate in classical concentration results such as Gaussian concentration and concentration on the Euclidean and Hamming cubes. Under suitable assumptions on the roundness of the sets of interest, the concentration inequalities so obtained are asymptotically optimal in the high-dimensional limit.Comment: 19 pages, 5 figure

    Cubic Polyhedra

    Full text link
    A cubic polyhedron is a polyhedral surface whose edges are exactly all the edges of the cubic lattice. Every such polyhedron is a discrete minimal surface, and it appears that many (but not all) of them can be relaxed to smooth minimal surfaces (under an appropriate smoothing flow, keeping their symmetries). Here we give a complete classification of the cubic polyhedra. Among these are five new infinite uniform polyhedra and an uncountable collection of new infinite semi-regular polyhedra. We also consider the somewhat larger class of all discrete minimal surfaces in the cubic lattice.Comment: 18 pages, many figure
    • …
    corecore