2,505 research outputs found
A Calibrated Measurement of the Near-IR Continuum Sky Brightness Using Magellan/FIRE
We characterize the near-IR sky background from 308 observations with the
FIRE spectrograph at Magellan. A subset of 105 observations selected to
minimize lunar and thermal effects gives a continuous, median spectrum from
0.83 to 2.5 microns which we present in electronic form. The data are used to
characterize the broadband continuum emission between atmospheric OH features
and correlate its properties with observing conditions such as lunar angle and
time of night. We find that the moon contributes significantly to the
inter-line continuum in the Y and J bands whereas the observed H band continuum
is dominated by the blended Lorentzian wings of multiple OH line profiles even
at R=6000. Lunar effects may be mitigated in Y and J through careful scheduling
of observations, but the most ambitious near-IR programs will benefit from
allocation during dark observing time if those observations are not limited by
read noise. In Y and J our measured continuum exceeds space-based average
estimates of the Zodiacal light, but it is not readily identified with known
terrestrial foregrounds. If further measurements confirm such a fundamental
background, it would impact requirements for OH-suppressed instruments
operating in this regime.Comment: 25 pages, 11 figures, accepted to PAS
Near-Infrared InGaAs Detectors for Background-limited Imaging and Photometry
Originally designed for night-vision equipment, InGaAs detectors are
beginning to achieve background-limited performance in broadband imaging from
the ground. The lower cost of these detectors can enable multi-band
instruments, arrays of small telescopes, and large focal planes that would be
uneconomical with high-performance HgCdTe detectors. We developed a camera to
operate the FLIR AP1121 sensor using deep thermoelectric cooling and
up-the-ramp sampling to minimize noise. We measured a dark current of 163-
s pix, a read noise of 87- up-the-ramp, and a well depth of
80k-. Laboratory photometric testing achieved a stability of 230 ppm
hr, which would be required for detecting exoplanet transits. InGaAs
detectors are also applicable to other branches of near-infrared time-domain
astronomy, ranging from brown dwarf weather to gravitational wave follow-up.Comment: Submitted to Proc. SPIE, Astronomical Telescopes + Instrumentation
(2014
Precision of a Low-Cost InGaAs Detector for Near Infrared Photometry
We have designed, constructed, and tested an InGaAs near-infrared camera to
explore whether low-cost detectors can make small (<1 m) telescopes capable of
precise (<1 mmag) infrared photometry of relatively bright targets. The camera
is constructed around the 640x512 pixel APS640C sensor built by FLIR
Electro-Optical Components. We designed custom analog-to-digital electronics
for maximum stability and minimum noise. The InGaAs dark current halves with
every 7 deg C of cooling, and we reduce it to 840 e-/s/pixel (with a
pixel-to-pixel variation of +/-200 e-/s/pixel) by cooling the array to -20 deg
C. Beyond this point, glow from the readout dominates. The single-sample read
noise of 149 e- is reduced to 54 e- through up-the-ramp sampling. Laboratory
testing with a star field generated by a lenslet array shows that 2-star
differential photometry is possible to a precision of 631 +/-205 ppm (0.68
mmag) hr^-0.5 at a flux of 2.4E4 e-/s. Employing three comparison stars and
de-correlating reference signals further improves the precision to 483 +/-161
ppm (0.52 mmag) hr^-0.5. Photometric observations of HD80606 and HD80607 (J=7.7
and 7.8) in the Y band shows that differential photometry to a precision of 415
ppm (0.45 mmag) hr^-0.5 is achieved with an effective telescope aperture of
0.25 m. Next-generation InGaAs detectors should indeed enable Poisson-limited
photometry of brighter dwarfs with particular advantage for late-M and L types.
In addition, one might acquire near-infrared photometry simultaneously with
optical photometry or radial velocity measurements to maximize the return of
exoplanet searches with small telescopes.Comment: Accepted to PAS
Eicosapentaenoic acid and oxypurinol in the treatment of muscle wasting in a mouse model of cancer cachexia
Cancer cachexia is a wasting condition, driven by systemic inflammation and oxidative stress. This study investigated eicosapentaenoic acid (EPA) in combination with oxypurinol as a treatment in a mouse model of cancer cachexia. Mice with cancer cachexia were randomized into 4 treatment groups (EPA (0.4 g/kg/day), oxypurinol (1 mmol/L ad-lib), combination, or control), and euthanized after 29 days. Analysis of oxidative damage to DNA, mRNA analysis of pro-oxidant, antioxidant and proteolytic pathway components, along with enzyme activity of pro- and antioxidants were completed on gastrocnemius muscle. The control group displayed earlier onset of tumor compared to EPA and oxypurinol groups (P<0.001). The EPA group maintained body weight for an extended duration (20 days) compared to the oxypurinol (5 days) and combination (8 days) groups (P<0.05). EPA (18.2±3.2 pg/ml) and combination (18.4±3.7 pg/ml) groups had significantly higher 8-OH-dG levels than the control group (12.9±1.4 pg/ml, P≤0.05) indicating increased oxidative damage to DNA. mRNA levels of GPx1, MURF1 and MAFbx were higher following EPA treatment compared to control (P≤0.05). Whereas oxypurinol was associated with higher GPx1, MnSOD, CAT, XDH, MURF1, MAFbx and UbB mRNA compared to control (P≤0.05). Activity of total SOD was higher in the oxypurinol group (32.2±1.5 U/ml) compared to control (27.0±1.3 U/ml, P<0.01), GPx activity was lower in the EPA group (8.76±2.0 U/ml) compared to control (14.0±1.9 U/ml, P<0.05), and catalase activity was lower in the combination group (14.4±2.8 U/ml) compared to control (20.9±2.0 U/ml, P<0.01). There was no change in XO activity. The increased rate of weight decline in mice treated with oxypurinol indicates that XO may play a protective role during the progression of cancer cachexia, and its inhibition is detrimental to outcomes. In combination with EPA, there was little significant improvement from control, indicating oxypurinol is unlikely to be a viable treatment compound in cancer cachexia.<br /
Teachers’ Perceptions of Financial Literacy and the Implications for Professional Learning
Consumer, economic and financial literacy education at school is central to active and informed citizenship. Over the past decade, the Australian Securities and Investments Commission has led various policy initiatives and influenced curriculum and resource development in this area. However, there remains a paucity of research exploring how Australian teachers make sense of and approach their work as financial literacy educators or their professional learning needs and interests in this interdisciplinary field. This article reports research exploring practising teachers’ perceptions of the opportunities for financial literacy teaching and learning. Data were collected from 35 teachers in 16 Victorian primary schools. The findings suggest a need to educate teachers to: reflect upon the knowledge, skills and capabilities required to make informed financial decisions; identify and interpret the possibilities for financial literacy teaching and learning in the Australian Curriculum; and enact sophisticated pedagogical practice
Background-Limited Imaging in the Near-Infrared with Warm InGaAs Sensors: Applications for Time-Domain Astronomy
We describe test observations made with a customized 640 x 512 pixel Indium
Gallium Arsenide (InGaAs) prototype astronomical camera on the 100" DuPont
telescope. This is the first test of InGaAs as a cost-effective alternative to
HgCdTe for research-grade astronomical observations. The camera exhibits an
instrument background of 113 e-/sec/pixel (dark + thermal) at an operating
temperature of -40C for the sensor, maintained by a simple thermo-electric
cooler. The optical train and mechanical structure float at ambient temperature
with no cold stop, in contrast to most IR instruments which must be cooled to
mitigate thermal backgrounds. Measurements of the night sky using a reimager
with plate scale of 0.4 arc seconds / pixel show that the sky flux in Y is
comparable to the dark current. At J the sky brightness exceeds dark current by
a factor of four, and hence dominates the noise budget. The sensor read noise
of ~43e- falls below sky+dark noise for exposures of t>7 seconds in Y and 3.5
seconds in J. We present test observations of several selected science targets,
including high-significance detections of a lensed Type Ia supernova, a type
IIb supernova, and a z=6.3 quasar. Deeper images are obtained for two local
galaxies monitored for IR transients, and a galaxy cluster at z=0.87. Finally,
we observe a partial transit of the hot JupiterHATS34b, demonstrating the
photometric stability required over several hours to detect a 1.2% transit
depth at high significance. A tiling of available larger-format sensors would
produce an IR survey instrument with significant cost savings relative to
HgCdTe-based cameras, if one is willing to forego the K band. Such a camera
would be sensitive for a week or more to isotropic emission from r-process
kilonova ejecta similar to that observed in GW170817, over the full 190 Mpc
horizon of Advanced LIGO's design sensitivity for neutron star mergers.Comment: 13 pages, 12 figures, submitted to A
THE IDENTIFICATION OF z -DROPOUTS IN PAN-STARRS1: THREE QUASARS AT 6.5< z < 6.7
Luminous distant quasars are unique probes of the high-redshift intergalactic medium (IGM) and of the growth of massive galaxies and black holes in the early universe. Absorption due to neutral hydrogen in the IGM makes quasars beyond a redshift of z ≃ 6.5 very faint in the optical z band, thus locating quasars at higher redshifts requires large surveys that are sensitive above 1 micron. We report the discovery of three new z > 6.5 quasars, corresponding to an age of the universe of 6.5 quasars from four to seven. The quasars have redshifts of z = 6.50, 6.52, and 6.66, and include the brightest z-dropout quasar reported to date, PSO J036.5078 + 03.0498 with M[subscript 1450] = -27.4. We obtained near-infrared spectroscopy for the quasars, and from the Mg ii line, we estimate that the central black holes have masses between 5 × 10[superscript 8] and 4 × 10[superscript 9] M[subscript ʘ] and are accreting close to the Eddington limit (L[subscript Bol]/L[subscript Edd] = 0.13 - 1.2). We investigate the ionized regions around the quasars and find near-zone radii of R[subscript NZ] = 1.5 - 5.2 proper Mpc, confirming the trend of decreasing near-zone sizes with increasing redshift found for quasars at 5.7 < z < 6.4. By combining R[subscript NZ] of the PS1 quasars with those of 5.7 < z < 7.1 quasars in the literature, we derive a luminosity-corrected redshift evolution of R[subscript NZ,corrected] = (7.2 ± 0.2) - (6.1 ± 0.7) x (z - 6) Mpc. However, the large spread in R[subscript NZ] in the new quasars implies a wide range in quasar ages and/or a large variation in the neutral hydrogen fraction along different lines of sight.National Science Foundation (U.S.) (Grant AST-1109915
22q11.2 deletion syndrome
22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population
Generalist Primary School Teachers’ Preferences for Becoming Subject Matter Specialists
Traditionally Australian primary school teachers have been viewed as generalists responsible for instruction across all content areas. Adopting self-determination theory as a lens, the aim of the study was to explore the extent to which generalist primary school teachers are interested in becoming subject matter specialists. Questionnaire data were collected from 104 early years primary school teachers. Findings suggest that two-thirds of these generalist teachers expressed an interest in specialising in either English, mathematics, and to a far lesser extent, science, such that they would be responsible for exclusively teaching this subject. Preferences for specialisation were based on teachers’ self-perceived content and pedagogical expertise and/ or their enjoyment of teaching in this content area. By contrast, the one-third of teachers who would choose to remain generalists referred to the value in a variety of teaching experiences, teaching from a whole child perspective and content integration. Implications for educational policy are discussed
- …