87 research outputs found
Phylogeography of Japanese encephalitis virus:genotype is associated with climate
The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate
Induction of moulting in hatchery-reared mangrove crab Scylla serrata juveniles through temperature manipulation or autotomy
The effects of temperature and autotomy of chelipeds on survival, growth and moulting of mangrove crab (Scylla serrata) juveniles were investigated under laboratory conditions for 60 days. Hatcheryâproduced crabs with 2.0â2.3 cm internal carapace width (1.7â2.2 g body weight) at intermoult stage were exposed to one of four temperature treatments (constant 29, 32 or 35°C, or ambient [24â31°C]) or subjected to cheliped autotomy. All crabs held at 35°C had 100% mortality due to incomplete moulting during first moult. The mean survival of crabs at termination was 58%, 64% and 50% for ambient temperature, 29 and 32°C respectively. Specific growth rate (SGR) of crabs in the ambient and 29°C were comparable but significantly lower than those at 32°C. The moult interval of the crabs was significantly shorter in treatments with constant water temperature of 29 and 32°C compared with ambient temperature. The survival of crabs with intact chelipeds was comparable with those with one or two autotomized chelipeds. Crabs with intact or one autotomized chelipeds had significantly higher SGR than crabs with both chelipeds autotomized in the first moult. On the second moult, however, high SGR was observed in crabs with two chelipeds autotomized. The moult interval was significantly shorter in the autotomized crabs compared with crabs with intact chelipeds. The results suggest that the optimum water temperature for rearing S. serrata juveniles ranges from 29 to 32°C. Likewise, autotomy of chelipeds can promote moulting without adversely affecting survival of crabs
- âŠ