183 research outputs found

    Determination of Silver Traces in Pure Metallic Copper and Zinc by a Catalytic Photometric Method

    Get PDF
    Determination of silver traces in the presence of copper, zinc and sulphate ions by a catalytic method was studied. The highly sensitive method of silver determination is based on the catalytic effect of silver ions on the oxidation of salicylic acid by persulphate in the presence of 2,2\u27-dipyridyl as an activator. The reaction was followed spectrophotometrically by measuring the rate of change in absorbance with time at 420 nm after 10 min of reagents mixing. The sensitivity, precision and accuracy of the determination of silver traces were investigated in solutions containing excesses of interfering ions. The studied range of interfering ions concentrations was 8 × 10–6 to 2.4 × 10–2 mol dm–3 and corresponds to an amount ratio of interfering to silver ions from 50 to 150 000. The performed analyses showed that the accuracy and precision of silver trace determination by the proposed method is high even in the presence of a huge amount excess of interfering ions. The method was used for quantitative determination of silver contents in a copper foil and in a zinc rod. The obtained results were compared with the analyses performed by FAAS

    Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time

    Get PDF
    The through-hole porous anodic aluminum oxide (AAO) membranes were fabricated by a simple two-step anodization of aluminum in 0.3 M oxalic acid, 0.3 M sulfuric acid, and 2 wt.% phosphoric acid solutions under different operating conditions followed by the removal of the remaining Al substrate and the pore opening/widening process. The effect of duration of the second anodizing step on the thickness of the porous oxide layer and the influence of other anodizing conditions such as applied voltage, type of electrolyte, and purity of the substrate on the rate of porous oxide growth were discussed in detail. The pore opening procedure for all synthesized membranes was optimized, and the influence of the duration of chemical etching on structural features of AAO membranes, especially pore diameter, was studied. The rate of pore widening was established for AAO membranes formed in various anodizing electrolytes and for different temperatures of 5 wt.% H3PO4 used for alumina dissolution

    Photocatalytic Decolorization of Methyl Red on Nanoporous Anodic ZrO2 of Different Crystal Structures

    Get PDF
    High surface area, self-organized nanoporous ZrO2 arrays with perfect adhesion to the Zr substrate were synthesized by anodization in an aqueous electrolyte containing (NH4)2SO4 and NH4F. The obtained semiconductor materials were tested as photocatalysts for decolorization of the methyl red (MR) as a model azo dye pollutant. It was demonstrated that as-synthesized anodic ZrO2 anodic layers are already crystalline and, therefore, do not require further thermal treatment to provide a high photocatalytic performance. However, photocatalytic efficiency could be improved by annealing at a relatively low-temperature of 350 °C. Higher annealing temperatures caused a gradual drop of photocatalytic activity. The photocatalytic behavior was correlated with the crystal phase transformation in anodic ZrO2. It was found that higher photocatalytic activity was observed for the tetragonal phase over the monoclinic phase (predominant at elevated temperatures). It results from the optimal and complex electronic structure of annealed ZrO2 with three different energy states having absorption edges at 2.0, 4.01 and 5.28 eV.Alexander von Humboldt-StiftungPeer Reviewe

    Improving photoelectrochemical properties of anodic WO3WO_3 layers by optimizing electrosynthesis conditions

    Get PDF
    Although anodic tungsten oxide has attracted increasing attention in recent years, there is still a lack of detailed studies on the photoelectrochemical (PEC) properties of such kind of materials grown in different electrolytes under various sets of conditions. In addition, the morphology of photoanode is not a single factor responsible for its PEC performance. Therefore, the attempt was to correlate different anodizing conditions (especially electrolyte composition) with the surface morphology, oxide thickness, semiconducting, and photoelectrochemical properties of anodized oxide layers. As expected, the surface morphology of WO3 depends strongly on anodizing conditions. Annealing of as-synthesized tungsten oxide layers at 500 °C for 2 h leads to obtaining a monoclinic WO3 phase in all cases. From the Mott-Schottky analysis, it has been confirmed that all as prepared anodic oxide samples are n-type semiconductors. Band gap energy values estimated from incident photon−to−current efficiency (IPCE) measurements neither differ significantly for as−synthesized WO3 layers nor depend on anodizing conditions such as electrolyte composition, time and applied potential. Although the estimated band gaps are similar, photoelectrochemical properties are different because of many different reasons, including the layer morphology (homogeneity, porosity, pore size, active surface area), oxide layer thickness, and semiconducting properties of the material, which depend on the electrolyte composition used for anodization

    The impacts of crystalline structure and different surface functional groups on drug release and the osseointegration process of nanostructured TiO2TiO_2

    Get PDF
    In implantable materials, surface topography and chemistry are the most important in the effective osseointegration and interaction with drug molecules. Therefore, structural and surface modifications of nanostructured titanium dioxide (TiO2) layers are reported in the present work. In particular, the modification of annealed TiO2 samples with —OH groups and silane derivatives, confirmed by X-ray photoelectron spectroscopy, is shown. Moreover, the ibuprofen release process was studied regarding the desorption-desorption-diffusion (DDD) kinetic model. The results proved that the most significant impact on the release profile is annealing, and further surface modifications did not change its kinetics. Additionally, the cell adhesion and proliferation were examined based on the MTS test and immunofluorescent staining. The obtained data showed that the proposed changes in the surface chemistry enhance the samples’ hydrophilicity. Moreover, improvements in the adhesion and proliferation of the MG-63 cells were observed

    Effect of different polishing methods on anodic titanium dioxide formation

    Get PDF
    Among various methods of synthesis of nanostructured TiO2, a self-organized anodization is the most commonly used and discussed in the literature. However, different methods of pretreatment of Ti before anodic titanium dioxide (ATO) formation are not often addressed. Therefore, various polishing procedures based on mechanical, chemical, electrochemical, and combined electrochemical with chemical pretreatments were examined to establish whether they represent effective methods for smooth Ti surface preparation before anodization. The ATO layers were prepared via two-step anodization carried out in an ethylene glycol solution containing fluoride ions at 20°C and under the anodizing potential of 60 V. The influence of applied polishing method on the cell size, pore diameter, pore circularity, pore density, and porosity of the top ATO layer was studied. In addition, the effect of polishing procedure on cell arrangement in ATO films was also investigated. The quantitative analyses of the regularity of cell arrangement, based on the regularity ratio derived from bottom-view SEM images, showed that the type of polishing procedure does not affect the cell order
    corecore