17 research outputs found

    Multi-environmental evaluation of wheat tetraploid genotypes for agronomic traits under rainfed conditions in Syria

    Get PDF
    This study was conducted at Homs, Al-Swaida and Tartous, General Commission for Scientific Agricultural Research, Syria during 2016/2017 season. Seven wheat genotypes were planted under rainfed conditions in randomized complete block design with three replications. Studied traits were days to maturity, plant height, number of grain per spike, grain weight per spike, 1000 kernal weight and grain yield per plant to evaluate variance between genotypes and locations. Results showed existence of high variance between studied genotypes in all traits especially plant height. It resulted that genotype W45193 was significantly superior in grain yield per plant with an increasing rate of 69.62% comparing to control Sham 5. Also, it was significantly superior in spike numbers with an increasing rate of 53.53%, 57.24% compared to both controls Sham 3 and Sham 5, respectively. Genotype W45064 was significantly superior in grain weight per spike and 1000 kernal weight compare to both controls Sham 3 and Sham 5. W 45194 was significantly superior in 1000 kernal weight comparing to control Sham 5 (36.34, 31.16 g), respectively. Furthermore, all studied traits (except spike number per plant) were more significant in Tartous compare to both Homs and Al-Swaida

    Air born dust particles effects on microwave propagation in arid-area

    Get PDF
    Dust storms can degrade visibility and increase atmospheric attenuation. Therefore, microwave (MW) propagation is severely affected by dust storms in many parts of the world. Air-born dust particles may affect electromagnetic waves during a dust storm. In this paper air- born dust particles effects are studied based on measured visibility. Recent analytical and numerical models results are compared to the measured at 14 GHz. Consequently, measured attenuation is significantly greater than the predicted using recent analytical and numerical models. Dust storms can degrade visibility and increase atmospheric attenuation. Therefore, microwave (MW) propagation is severely affected by dust storms in many parts of the world. Air-born dust particles may affect electromagnetic waves during a dust storm. In this paper air- born dust particles effects are studied based on measured visibility. Recent analytical and numerical models results are compared to the measured at 14 GHz. Consequently, measured attenuation is significantly greater than the predicted using recent analytical and numerical models

    Effect of dust storm intensity variations on total path attenuation prediction

    Get PDF
    This paper proposes a novel dust-storm total path attenuation prediction model. This model is formulated as a function of specific attenuation (dB/km) and the effective distance, which considers the non-uniform dust storm intensity variations throughout the link. The effective distance is obtained as a combination of the total link distance and the reduction factor. The reduction factor is developed based on the modeled 2-D structure of the observed dust storm characteristics. A measurement campaign of atmospheric characteristics, their properties, and effects on several microwave links operated in Khartoum-Sudan was conducted. In an earlier report, an empirical dust storm attenuation prediction model was proposed based on short-distance links by assuming uniform dust storm intensity variations. However, it was observed that the dust intensity varies with the distance, which affects total attenuation, and this issue is not addressed yet. One year measurement on the 6.2 km and 7.6 km long microwave links operating at 21.2 GHz and 14.5 GHz are used to validate the proposed dust storm total path attenuation model

    Energy harvesting effect on prolonging low-power lossy networks lifespan

    Get PDF
    Low-power lossy networks performance relies heavily on the wireless node battery status. Furthermore, Routing Protocol for Low-Power and Lossy Network routing protocol was not optimally designed with sustainable energy consumption in mind to suit these networks. Prolonging the lifespan of these networks is of utmost priority. This article introduces a solar energy harvesting module to power energy-constrained network devices and quantifies the effect of using harvested energy on prolonging their network lifetime when Routing Protocol for Low-Power and Lossy Network routing protocol is used. Simulation of the new developed module is conducted in three different scenarios using Contiki Cooja simulator sporting Zolertia Z1 motes. Furthermore, the harvested energy used was fed from a Cooja-based Simulation model of actual PV supercapacitor circuit design. All battery levels were set to 1% of their total capacity for all nodes in the network to speed up observing the energy harvesting effect. The performance evaluation results showed that the network with no-energy harvesting operated for time duration of 4:08:04 time units (i.e. hour:minute:second) with a dramatic decrease in connection between nodes in the network. However, the same network, when using the harvested energy to back up the battery operation, lasted for 6:40:01 in time units with improved connectivity, a total extended network lifetime of 2:31:97-time units. Furthermore, for the Routing Protocol for Low-Power and Lossy Network routing metrics, OF0 outperformed ETX in term of throughput, packet delivery ratio, energy consumption, and network connectivity. Results indicate that the developed harvested energy module fits perfectly for any Cooja-based simulation and mimics actual photovoltaic-based supercapacitor battery. It should also help researchers introduce and quantify accurately new energy consumption-based routing metrics for Routing Protocol for Low-Power and Lossy Network

    Thermal-based early breast cancer detection using inception V3, inception V4 and modified inception MV4

    Get PDF
    Breast cancer is one of the most significant causes of death for women around the world. Breast thermography supported by deep convolutional neural networks is expected to contribute significantly to early detection and facilitate treatment at an early stage. The goal of this study is to investigate the behavior of different recent deep learning methods for identifying breast disorders. To evaluate our proposal, we built classifiers based on deep convolutional neural networks modelling inception V3, inception V4, and a modified version of the latter called inception MV4. MV4 was introduced to maintain the computational cost across all layers by making the resultant number of features and the number of pixel positions equal. DMR database was used for these deep learning models in classifying thermal images of healthy and sick patients. A set of epochs 3โ€“30 were used in conjunction with learning rates 1 9 10โ€“3, 1 9 10โ€“4 and 1 9 10โ€“5, Minibatch 10 and different optimization methods. The training results showed that inception V4 and MV4 with color images, a learning rate of 1 9 10โ€“4, and SGDM optimization method, reached very high accuracy, verified through several experimental repetitions. With grayscale images, inception V3 outperforms V4 and MV4 by a considerable accuracy margin, for any optimization methods. In fact, the inception V3 (grayscale) performance is almost comparable to inception V4 and MV4 (color) performance but only after 20โ€“30 epochs. inception MV4 achieved 7% faster classification response time compared to V4. The use of MV4 model is found to contribute to saving energy consumed and fluidity in arithmetic operations for the graphic processor. The results also indicate that increasing the number of layers may not necessarily be useful in improving the performance

    A Space Dilated Lightwave Network-A New Approach

    Get PDF
    In this paper, the space dilation concept for reducing crosstalk in Ti:LiNbO, directional coupler-based photonic switches operating at a single wavelength is applied using a new approach. A novel switch architecture is proposed for unieast nonblocking photonic switching networks to fully exploit the advantages of this method. Some properties of the switch architecture are derived and analyzed. The performance of the switch is also discussed and compared with other well-known network architectures. Keywords optical communication, optical switches, optical couplers, optical crosstalk, optical losses

    Feedlot performance and carcass characteristics of Sudan Desert sheep raised under irrigated Gezira conditions

    No full text
    Feedlot performance and carcass quality were investigated on Sudan Desert sheep raised under irrigated conditions in the Gezira area. Average daily gain over the fattening period of 56 days in the feedlot was 237.0ยฑ2.0 g. Single born lambs grew faster than twin-born lambs (

    A 4X4 Space Dilated Lightwave Network - A New Approach

    Get PDF
    In this paper, the space dilation concept for reducing crosstalk in Ti:LiNbO3 directional-coupler-based photonic switches operating at a single wavelength is applied using a new approach. A new method for minimizing the switch crosstalk is described. A novel 4X4 switch architecture is proposed for nonblocking photonic switching networks to fully exploit the advantages of this method. Some properties of the switch architecture are derived and analyzed. The performance of the switch is also discussed and compared with other well-known network architectures

    Reproductive performance of Sudan indigenous sheep under irrigated Gezira conditions

    No full text
    The study reports some of the reproductive traits, namely pregnancy length, ewe fertility and reproductive rate, pre-weaning survival and mortality rates of Sudan indigenous sheep under irrigated Gezira conditions

    Modelling and control design of a non-collaborative UAV wireless charging system

    No full text
    This study proposes an analytical model of a WPT system with three orthogonal transmitter coils organised to produce a concentrated and controlled omnidirectional magnetic field suited for charging a moving, rotating load, providing maximal energy transfer without receiving end feedback. In order to create a realistic 3D WPT simulation system and a precise controller design, the mutual coupling values in terms of the receiver angular positions are modelled using the Ansys software. In using the established model of the 3DWPT system, an extremum seeking control (ESC) is used to maximize the power transfer utilizing the input power as an objective function assigned with specified parametric values defining the WPT model. The output power transmitted by the sending-end coils to a load of a moving UAV rotating in orbit is displayed. According to simulation results, when the receiver UAV speed is close to 2250 deg/s, the controller can accomplish a maximum power transfer of 2.6w in almost 1ms
    corecore