229 research outputs found

    The effect of capture and handling stress in Lophius americanus in the scallop dredge fishery

    Get PDF
    Capture and handling stress studies are considered a primary research priority, particularly for species and fisheries where discard rates are high, and/or for overfished stocks and species of concern. Lophius americanus, a commercially valuable finfish in New England, constitutes the second highest bycatch species within the sea scallop dredge fishery. Despite its commercial importance, no data exists on the capture and handling stress of monkfish for any gear type. Given these shortcomings, our goals were to evaluate the stress response of monkfish captured in scallop dredge gear by evaluating physical, behavioural and physiological responses to scallop fishing practices. While 80% of monkfish displayed little to no physical trauma, behavioural and physiological assessment indicated high levels of stress, especially as air exposure and tow duration increased. This finding suggests that the manifestation of stress in monkfish may be a cryptic response necessitating further research in addition to estimates of post-release mortality rates to appropriately advise fisheries management regarding the mortality of monkfish bycatch in the sea scallop fishery

    Bycatch in a Commercial Lobster Fishery: Effects on Two Benthic Predators, Sea Raven and Longhorn Sculpin

    Get PDF
    Studying the species‐specific responses to fishing capture is critical for effective management and conservation of bycatch species given that acute stress incurred from capture and handling may ultimately lead to mortality. While species of low commercial value are often overlooked, having accurate information on the effects of capture on all species is necessary for ecosystem‐based management. Sea Raven (SR) Hemitripterus americanus and Longhorn Sculpin (LHS) Myoxocephalus octodecemspinosus are routinely captured in the commercial American lobster Homarus americanus fishery in the Gulf of Maine, and they are discarded due to low commercial value. Despite a lack of economic value, these predatory species play important roles in shaping the benthic communities that they inhabit, highlighting the need to study their stress and mortality due to capture and handling. To help understand the effects of the lobster fishery on these species, the current study evaluated the physical, behavioral, and physiological stress responses of SR and LHS to capture in the state of Maine Zone G commercial lobster fishery. Collectively, our results suggest that although these species appeared to be resilient to capture based on an overt injury assessment, stress responses occurred based on reflex impairment and physiological perturbations, and these responses were species‐specific. Given the prevalence of behavioral and physiological stress in this study, further research into the survival outcomes of SR and LHS following release in the commercial lobster fishery is warranted

    Indication of Density-Dependent Changes in Growth and Maturity of the Barndoor Skate on Georges Bank

    Get PDF
    Drastic increases or decreases in biomass often result in density-dependent changes in life history characteristics within a fish population. Acknowledging this phenomenon and in light of the recent biomass increase in Barndoor Skate Dipturus laevis, the current study re-evaluated the growth rate and sexual maturity of 244 specimens collected from 2009-2011within closed areas I and II on Georges Bank, USA. Ages were estimated using vertebral band counts from skate that ranged from 21 to 129cm TL. The von Bertalanffy growth function was applied to pooled age-at-length data. Parameter estimates from the current study of L = 155cm TL and k = 0.10 represent a significant decrease from previously reported parameters of L = 167cm TL and k = 0.14. In addition to changes in growth parameters, age at 50% maturity for both males (based on clasper length, testes mass, and percent mature spermatocytes) and females (based on data from shell gland mass, ovary mass, and follicle diameter) increased by 3years and 4years, respectively. Based on our results and the 10- to 12-year gap in the collection of samples, it is likely that Barndoor Skate within this region have exhibited pliability in life history parameters

    Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF

    Get PDF
    © 2016 BMJ Publishing Group Ltd & British Thoracic Society.Rationale Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. Methods We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. Results We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. Conclusions Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-ofmechanism trial of this agent is currently underway. Trial registration number NCT01725139, pre-clinical

    A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    Get PDF
    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIbα. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspBBR), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspBBR structure revealed that it is comprised of three independently folded subdomains or modules: 1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; 2) a second Ig-fold resembling the binding region of mammalian Siglecs; 3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIbα. Further examination of purified GspBBR-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues

    Proteinase-Activated Receptor-1, CCL2 and CCL7 Regulate Acute Neutrophilic Lung Inflammation

    Get PDF
    PAR1 plays a central role in mediating the interplay between coagulation and inflammation, but its role in regulating acute neutrophilic inflammation is unknown. We report that antagonism of PAR1 was highly effective at reducing acute neutrophil accumulation in a mouse model of LPS-induced lung inflammation. PAR1 antagonism also reduced alveolar-capillary barrier disruption in these mice. This protection was associated with a reduction in the expression of the chemokines CCL2 and CCL7, but not the pro-inflammatory cytokines TNF and IL-6 or the classic neutrophil chemoattractants CXCL1 and CXCL2. Antibody neutralisation of CCL2 and CCL7 significantly reduced LPS-induced total leukocyte and neutrophil accumulation, recovered from the bronchoalveolar lavage fluid of challenged mice. Immunohistochemical analysis revealed CCL2 predominantly localised to alveolar macrophages and pulmonary epithelial cells, while CCL7 was restricted to the pulmonary epithelium. In keeping with these observations, the intranasal administration of rCCL2 and rCCL7 led to the accumulation of neutrophils within the lung airspaces of naïve mice in the absence of any underlying inflammation. Flow cytometry analysis further demonstrated an increase in Ly6Ghi neutrophils expressing the chemokine receptors CCR1 and CCR2 isolated from mouse lungs compared to circulating neutrophils. Conversely, the expression of CXCR2 decreased on neutrophils isolated from the lung compared to circulating neutrophils. Furthermore, this switch in chemokine receptor expression was accentuated following acute LPS-induced lung inflammation. Collectively, these findings reveal a novel role for PAR1 and the chemokines CCL2 and CCL7 during the early events of acute neutrophilic inflammation

    Short-term post release mortality of skates (family Rajidae) discarded in a western North Atlantic commercial otter trawl fishery

    Get PDF
    a b s t r a c t Due to market and regulatory factors, Rajidae skates are routinely discarded by commercial otter trawlers in the western North Atlantic. Accounting for post-release mortality is therefore essential to total fishing mortality estimates, stock status and management of this group of fishes. However, despite a presumed species-specific range in tolerance, few studies have investigated the short-term post-release mortality among skates indigenous to the western North Atlantic following capture by mobile fishing gears, and never in the Gulf of Maine. This study addresses this shortfall for the prohibited thorny skate, Amblyraja radiate and smooth skate, Malacoraja senta, and the targeted winter skate, Leucoraja ocellata, and little skate, Leucoraja erinacea. Of 1288 skates evaluated, negligible immediate mortality was observed at the time of capture, even in relation to the largest catches and/or most prolonged tows. However, injury frequency was moderate, with highest levels in the smooth (60%) and thorny (52%) skates. Aside from the smooth skate (59%), 72 h mortality rates were low overall (19% across all species when accounting tow durations indicative of the fishery), with the winter skate (8%) exhibiting the lowest levels. Logistic regression modeling revealed tow duration as the most universal predictor of condition and 72 h mortality, while catch biomass, sex, temperature changes, and animal size also held influence in certain species. Although in general the studied species appear more resilient to trawl capture and handling than previously estimated, interspecific differences must be accounted for when managing this group

    Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze

    Get PDF
    Pesticides, including neonicotinoids, typically target pest insects by being neurotoxic. Inadvertent exposure to foraging insect pollinators is usually sub-lethal, but may affect cognition. One cognitive trait, spatial working memory, may be important in avoiding previously-visited flowers and other spatial tasks such as navigation. To test this, we investigated the effect of acute thiamethoxam exposure on spatial working memory in the bumblebee Bombus terrestris, using an adaptation of the radial-arm maze (RAM). We first demonstrated that bumblebees use spatial working memory to solve the RAM by showing that untreated bees performed significantly better than would be expected if choices were random or governed by stereotyped visitation rules. We then exposed bees to either a high sub-lethal positive control thiamethoxam dose (2.5ng-1 bee), or one of two low doses (0.377 or 0.091ng-1) based on estimated field-realistic exposure. The high dose caused bees to make more and earlier spatial memory errors and take longer to complete the task than unexposed bees. For the low doses, the negative effects were smaller but statistically significant, and dependent on bee size. The spatial working memory impairment shown here has the potential to harm bees exposed to thiamethoxam, through possible impacts on foraging efficiency or homing
    corecore