2 research outputs found

    Intercomparison of Large-Eddy Simulations of Arctic Mixed-Phase Clouds: Importance of Ice Size Distribution Assumptions

    Get PDF
    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds

    Quantitative Content Analysis Data for Hand Labeling Road Surface Conditions in New York State Department of Transportation Camera Images

    No full text
    Traffic camera images from the New York State Department of Transportation (511ny.org) are used to create a hand-labeled dataset of images classified into to one of six road surface conditions: 1) severe snow, 2) snow, 3) wet, 4) dry, 5) poor visibility, or 6) obstructed. Six labelers (authors Sutter, Wirz, Przybylo, Cains, Radford, and Evans) went through a series of four labeling trials where reliability across all six labelers were assessed using the Krippendorff’s alpha (KA) metric (Krippendorff, 2007). The online tool by Dr. Freelon (Freelon, 2013; Freelon, 2010) was used to calculate reliability metrics after each trial, and the group achieved inter-coder reliability with KA of 0.888 on the 4th trial. This process is known as quantitative content analysis, and three pieces of data used in this process are shared, including: 1) a PDF of the codebook which serves as a set of rules for labeling images, 2) images from each of the four labeling trials, including the use of New York State Mesonet weather observation data (Brotzge et al., 2020), and 3) an Excel spreadsheet including the calculated inter-coder reliability metrics and other summaries used to asses reliability after each trial. The broader purpose of this work is that the six human labelers, after achieving inter-coder reliability, can then label large sets of images independently, each contributing to the creation of larger labeled dataset used for training supervised machine learning models to predict road surface conditions from camera images. The xCITE lab (xCITE, 2023) is used to store camera images from 511ny.org, and the lab provides computing resources for training machine learning models
    corecore