845 research outputs found

    Embedded Eigenvalues and the Nonlinear Schrodinger Equation

    Full text link
    A common challenge to proving asymptotic stability of solitary waves is understanding the spectrum of the operator associated with the linearized flow. The existence of eigenvalues can inhibit the dispersive estimates key to proving stability. Following the work of Marzuola & Simpson, we prove the absence of embedded eigenvalues for a collection of nonlinear Schrodinger equations, including some one and three dimensional supercritical equations, and the three dimensional cubic-quintic equation. Our results also rule out nonzero eigenvalues within the spectral gap and, in 3D, endpoint resonances. The proof is computer assisted as it depends on the sign of certain inner products which do not readily admit analytic representations. Our source code is available for verification at http://www.math.toronto.edu/simpson/files/spec_prop_asad_simpson_code.zip.Comment: 29 pages, 27 figures: fixed a typo in an equation from the previous version, and added two equations to clarif

    Stress dependent thermal pressurization of a fluid-saturated rock

    Get PDF
    Temperature increase in saturated porous materials under undrained conditions leads to thermal pressurization of the pore fluid due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the solid matrix. This increase in the pore fluid pressure induces a reduction of the effective mean stress and can lead to shear failure or hydraulic fracturing. The equations governing the phenomenon of thermal pressurization are presented and this phenomenon is studied experimentally for a saturated granular rock in an undrained heating test under constant isotropic stress. Careful analysis of the effect of mechanical and thermal deformation of the drainage and pressure measurement system is performed and a correction of the measured pore pressure is introduced. The test results are modelled using a non-linear thermo-poro-elastic constitutive model of the granular rock with emphasis on the stress-dependent character of the rock compressibility. The effects of stress and temperature on thermal pressurization observed in the tests are correctly reproduced by the model

    Fourier mode dynamics for the nonlinear Schroedinger equation in one-dimensional bounded domains

    Full text link
    We analyze the 1D focusing nonlinear Schr\"{o}dinger equation in a finite interval with homogeneous Dirichlet or Neumann boundary conditions. There are two main dynamics, the collapse which is very fast and a slow cascade of Fourier modes. For the cubic nonlinearity the calculations show no long term energy exchange between Fourier modes as opposed to higher nonlinearities. This slow dynamics is explained by fairly simple amplitude equations for the resonant Fourier modes. Their solutions are well behaved so filtering high frequencies prevents collapse. Finally these equations elucidate the unique role of the zero mode for the Neumann boundary conditions

    Stability of Discrete Solitons in the Presence of Parametric Driving

    Full text link
    In this brief report, we consider parametrically driven bright solitons in the vicinity of the anti-continuum limit. We illustrate the mechanism through which these solitons become unstable due to the collision of the phase mode with the continuous spectrum, or eigenvelues bifurcating thereof. We show how this mechanism typically leads to complete destruction of the bright solitary wave.Comment: 4 pages, 4 figure

    A generalized nonlinear Schr\"odinger equation as model for turbulence, collapse, and inverse cascade

    Full text link
    A two-dimensional generalized cubic nonlinear Schr\"odinger equation with complex coefficients for the group dispersion and nonlinear terms is used to investigate the evolution of a finite-amplitude localized initial perturbation. It is found that modulation of the latter can lead to side-band formation, wave condensation, collapse, turbulence, and inverse cascade, although not all together nor in that order.Comment: 12 pages, 5 figure

    Transport in simple networks described by integrable discrete nonlinear Schr\"Aodinger equation

    Full text link
    We elucidate the case in which the Ablowitz-Ladik (AL) type discrete nonlinear Schr\"Aodinger equa- tion (NLSE) on simple networks (e.g., star graphs and tree graphs) becomes completely integrable just as in the case of a simple 1-dimensional (1-d) discrete chain. The strength of cubic nonlinearity is different from bond to bond, and networks are assumed to have at least two semi-infinite bonds with one of them working as an incoming bond. The present work is a nontrivial extension of our preceding one (Sobirov et al, Phys. Rev. E 81, 066602 (2010)) on the continuum NLSE to the discrete case. We find: (1) the solution on each bond is a part of the universal (bond-independent) AL soliton solution on the 1-d discrete chain, but is multiplied by the inverse of square root of bond-dependent nonlinearity; (2) nonlinearities at individual bonds around each vertex must satisfy a sum rule; (3) under findings (1) and (2), there exist an infinite number of constants of motion. As a practical issue, with use of AL soliton injected through the incoming bond, we obtain transmission probabilities inversely proportional to the strength of nonlinearity on the outgoing bonds

    Symmetry Breaking in Symmetric and Asymmetric Double-Well Potentials

    Get PDF
    Motivated by recent experimental studies of matter-waves and optical beams in double well potentials, we study the solutions of the nonlinear Schr\"{o}dinger equation in such a context. Using a Galerkin-type approach, we obtain a detailed handle on the nonlinear solution branches of the problem, starting from the corresponding linear ones and predict the relevant bifurcations of solutions for both attractive and repulsive nonlinearities. The results illustrate the nontrivial differences that arise between the steady states/bifurcations emerging in symmetric and asymmetric double wells

    Symbiotic Solitons in Heteronuclear Multicomponent Bose-Einstein condensates

    Full text link
    We show that bright solitons exist in quasi-one dimensional heteronuclear multicomponent Bose-Einstein condensates with repulsive self-interaction and attractive inter-species interaction. They are remarkably robust to perturbations of initial data and collisions and can be generated by the mechanism of modulational instability. Some possibilities for control and the behavior of the system in three dimensions are also discussed

    Distribution of eigenfrequencies for oscillations of the ground state in the Thomas--Fermi limit

    Get PDF
    In this work, we present a systematic derivation of the distribution of eigenfrequencies for oscillations of the ground state of a repulsive Bose-Einstein condensate in the semi-classical (Thomas-Fermi) limit. Our calculations are performed in 1-, 2- and 3-dimensional settings. Connections with the earlier work of Stringari, with numerical computations, and with theoretical expectations for invariant frequencies based on symmetry principles are also given.Comment: 8 pages, 1 figur
    corecore