research

Embedded Eigenvalues and the Nonlinear Schrodinger Equation

Abstract

A common challenge to proving asymptotic stability of solitary waves is understanding the spectrum of the operator associated with the linearized flow. The existence of eigenvalues can inhibit the dispersive estimates key to proving stability. Following the work of Marzuola & Simpson, we prove the absence of embedded eigenvalues for a collection of nonlinear Schrodinger equations, including some one and three dimensional supercritical equations, and the three dimensional cubic-quintic equation. Our results also rule out nonzero eigenvalues within the spectral gap and, in 3D, endpoint resonances. The proof is computer assisted as it depends on the sign of certain inner products which do not readily admit analytic representations. Our source code is available for verification at http://www.math.toronto.edu/simpson/files/spec_prop_asad_simpson_code.zip.Comment: 29 pages, 27 figures: fixed a typo in an equation from the previous version, and added two equations to clarif

    Similar works

    Full text

    thumbnail-image

    Available Versions