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Symmetry Breaking in Symmetric and Asymmetric Double-Well Potentials

G. Theocharis1, P.G. Kevrekidis2, D.J. Frantzeskakis1, and P. Schmelcher3,4
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2 Department of Mathematics and Statistics,University of Massachusetts, Amherst MA 01003-4515, USA

3 Theoretische Chemie, Physikalisch-Chemisches Institut,

INF 229, Universität Heidelberg, 69120 Heidelberg, Germany
4 Physikalisches Institut, Philosophenweg 12, Universität Heidelberg, 69120 Heidelberg, Germany

Motivated by recent experimental studies of matter-waves and optical beams in double well po-
tentials, we study the solutions of the nonlinear Schrödinger equation in such a context. Using a
Galerkin-type approach, we obtain a detailed handle on the nonlinear solution branches of the prob-
lem, starting from the corresponding linear ones and predict the relevant bifurcations of solutions
for both attractive and repulsive nonlinearities. The results illustrate the nontrivial differences that
arise between the steady states/bifurcations emerging in symmetric and asymmetric double wells.

Introduction. It is well known that the nonlinear
Schrödinger (NLS) equation is a fundamental model de-
scribing the evolution of a complex field envelope in non-
linear dispersive media [1]. As such, it plays a key role
in many different contexts, ranging from nonlinear and
atom optics to plasma physics, fluid dynamics, and even
biophysical models [2]. The interest in the NLS equa-
tion has dramatically increased during the last few years,
as it also describes the mean-field dynamics of Bose-
Einstein condensates (BECs) [3]. In this context, the
NLS is also known as the Gross-Pitaevskii (GP) equa-
tion, and typically incorporates external potentials that
are used for the BEC confinement. Such potentials may
be, e.g., harmonic (usually implemented by external mag-
netic fields) or periodic (implemented by the interference
of laser beams), so-called optical lattices [4]. Importantly,
NLS models with similar external potentials appear also
in the context of optics, where they respectively describe
the evolution of an optical beam in a graded-index waveg-
uide or in periodic waveguide arrays [5, 6].

Another type of external potential, which has mainly
been studied theoretically in the BEC context [7, 8, 9, 10,
11, 12] is the double well potential. Moreover, it has been
demonstrated experimentally that a BEC either tunnels
and performs Josephson oscillations between the wells,
or is subject to macroscopic quantum self-trapping [13].
On the other hand, in the context of optics, a double
well potential can be created by a two-hump self-guided
laser beam in Kerr media [14]. A different alternative was
offered in [15], wherein the first stages of the evolution of
an optical beam, initially focused between the wells of a
photorefractive crystal, were monitored.

One of the particularly interesting features of either
matter-waves or optical beams in double well potentials
is the spontaneous symmetry breaking, i.e., the localiza-
tion of the respective order parameter in one of the wells
of the potential. Symmetry breaking solutions of the NLS
model have first been predicted in the context of molec-
ular states [16] and, apart from the physical contexts
of BECs [7, 8, 9, 10, 11, 12] (see also [17]) and optics
[14, 15] mentioned above, they have also been studied
from a mathematical point of view in Refs. [18, 19].

These works underscore the relevance and timeliness
of a better understanding of the dynamics of nonlinear
waves in double well potentials. In view of that, in the
present work we offer a systematic methodology, based
on a two-mode expansion, of how to tackle problems in
double wells, as regards their stationary states and the bi-
furcations (and ensuing instabilities) that arise in them.
This way, considering both cases of attractive and re-
pulsive nonlinearities, we illustrate the ways in which
a symmetric double well potential is different from an
asymmetric one. In particular, we demonstrate that, con-
trary to the case of symmetric potentials where symmetry
breaking follows a pitchfork bifurcation, in asymmetric
double wells the bifurcation is of the saddle-node type.

The paper is structured as follows: in Section II, we
present the model and set the analytical framework. In
Section III, we illustrate the value of the method by
highlighting the significant differences of symmetric and
asymmetric double wells. Finally, in Section IV, we sum-
marize our findings and discuss future directions.

Model and Analytical Approach. In a quasi-1D setting,
the evolution of the mean-field wavefunction of a BEC
[4] (or the envelope of an optical beam [5]) is described
by the following normalized NLS (GP) equation,

iut = −1

2
uxx + s|u|2u + V (x)u − µu. (1)

In the BEC (optics) context, µ denotes the chemical po-
tential (propagation constant) and s = ±1 for attractive
or repulsive interatomic interactions (focusing or defocus-
ing Kerr nonlinearity) respectively; below, for simplicity,
we will adopt the terms attractive and repulsive nonlin-
earity for s = ±1 respectively. Finally, in Eq. (1), V (x)
is the double well potential, which is assumed to be com-
posed by a parabolic trap (of strength Ω) and a sech2-
shaped barrier (of strength V0, width w and location x0);
in particular, V (x) is of the form:

V (x) =
1

2
Ω2x2 + V0sech

2

(

x − x0

w

)

, (2)

with the choice x0 = 0 (x0 6= 0) corresponding to a sym-
metric (asymmetric) double well. Note that such a dou-
ble well can be implemented in BEC experiments upon,

http://arXiv.org/abs/nlin/0604062v1


2

e.g., combining a magnetic trap with a sharply focused,
blue-detuned laser beam [20]. Similar double wells can
also be implemented e.g., in optical systems.

The spectrum of the underlying linear Schrödinger
equation (s = 0) consists of a ground state, u0(x), and
excited states, ul(x) (l ≥ 1). In the nonlinear problem,
using a Galerkin-type approach, we expand u(x, t) as,

u(x, t) = c0(t)u0(x) + c1(t)u1(x) + · · · , (3)

and truncate the expansion, keeping solely the first two
modes; here c0,1(t) are unknown time-dependent complex
prefactors. It is worth noticing that such an approxima-
tion (involving the truncation of higher order modes and
the spatio-temporal factorization of the wavefunction), is
expected to be quite useful for a weakly nonlinear anal-
ysis. In fact, as will be seen below, we will be able to
identify the nonlinear states that stem from the linear
ones, as well as their bifurcations.

Substituting Eq. (3) into Eq. (1), and projecting the
result to the corresponding eigenmodes, we obtain the
following ordinary differential equations (ODEs):

iċ0 = (ω0 − µ)c0 − sA0|c0|2c0 − sB(2|c1|2c0 + c2

1
c̄0),

− sΓ1|c1|2c1 − sΓ0(2|c0|2c1 + c2

0c̄1) (4)

iċ1 = (ω1 − µ)c1 − sA1|c1|2c1 − sB(2|c0|2c1 + c2

0
c̄1),

− sΓ0|c0|2c0 − sΓ1(2|c1|2c0 + c2

1
c̄0). (5)

In Eqs. (4)-(5), dots denote time derivatives, overbars
denote complex conjugates, ω0,1 are the eigenvalues cor-
responding to the eigenstates u0,1, while A0 =

∫

u4

0
dx,

A1 =
∫

u4

1dx, B =
∫

u2

0u
2

1dx, Γ0 =
∫

u0u
3

1dx and
Γ1 =

∫

u1u
3

0
dx are constants. Recall that u0 and u1

are real (due to the Hermitian nature of the underlying
linear Schrödinger problem) and are also orthonormal.
Notice also that in the symmetric case (x0 = 0), due to
the parity of the eigenfunctions, Γ0 = Γ1 = 0.

We now use amplitude-phase (action-angle) variables,
cj = ρje

iφj , j = 0, 1 (ρj and φj are assumed to be real),
to derive from the ODEs (4)-(5) a set of four equations.
Introducing the function ϕ ≡ φ1 − φ0, we find that the
equations for ρ0 and φ0 are,

ρ̇0 = s[(Γ0ρ
2

0
+ Γ1ρ

2

1
) sin(ϕ) − ρ2

1
ρ0 sin(2ϕ)], (6)

φ̇0 = (ω0 − µ) + sA0ρ
2

0
+ 2sBρ2

1
+ sBρ2

1
cos(2ϕ)

+ s

(

Γ1ρ
3
1

ρ0

+ 3ρ0ρ1Γ0

)

cos(ϕ), (7)

while the equations for ρ1, φ1 are found by interchanging
indices 1 and 0 in the above equations. Next, taking into
regard the conservation of the total norm, we obtain the
equation ρ2

0 +ρ2

1 = N , where N =
∫

|u|2dx is the integral
of motion of Eq. (1) (the number of particles in BECs,
or the power in optics). Finally, subtracting Eq. (7) for

φ̇0, and the corresponding one for φ̇1, we obtain:

ϕ̇ = −∆ω + s(A0ρ
2

0 − A1ρ
2

1)

− sB(2 + cos(2ϕ))(ρ2

0
− ρ2

1
) − s

cos(ϕ)

ρ0ρ1

×
[

Γ0ρ
2

0
(ρ2

0
− 3ρ2

1
) + Γ1ρ

2

1
(3ρ2

0
− ρ2

1
)
]

. (8)

Equations (6), (8) is a dynamical system, which, in prin-
ciple, can be thoroughly investigated using phase-space
analysis (such an approach has been presented in [7, 8] for
similar systems that were derived using different expan-
sion of the field u). Here, we will focus on the fixed points
of the system [corresponding to the nonlinear eigenstates
of Eq. (1)], and analyze their stability and bifurcations.

Results. Below we will analyze all possible cases (s =
±1, x0 = 0, x0 6= 0) for the double well of Eq. (2) with
V0 = 1, Ω = 0.1, and w = 0.5 (the results do not change
qualitatively using different values).

First we consider the case of attractive nonlinearity,
i.e., s = −1, and a symmetric double well potential with
x0 = 0 (implying that Γ0 = Γ1 = 0). In this case, the
parameters involved in Eqs. (6) and (8) are found to be
A0 = 0.09078, A1 = 0.09502, B = 0.08964, ω0 = 0.13282
and ω1 = 0.15571. Then, it is readily observed that the
possible real solutions of Eq. (6) are ρ0 = 0 and ρ1 = 0,
as well as ϕ = 0 (mod π). The former two are contin-
uations of the linear solutions in the nonlinear regime.
However, the latter one is a non-trivial combination of
the two modes for ϕ = π that results in an asymmet-
ric pair of mirror-symmetric solutions [15, 17], emerging
through a pitchfork bifurcation. From Eq. (8), we ob-
tain that this new branch of solutions bifurcates from
the symmetric branch (ρ0, ρ1) = (

√
N, 0) for

N > Nc =
∆ω

3B − A0

, (9)

and for µ < µc = ω0 − A0N = 0.12115. These analytical
predictions are in excellent agreement with the numeri-
cal results µc = 0.122(±0.001). It is also easy to see that

the anti-symmetric branch (ρ0, ρ1) = (0,
√

N) does not
give rise to such a bifurcation. The different branches
of the full numerical solutions (including the bifurcating
ones) have been obtained through numerical fixed point
algorithms solving the steady state version of Eq. (1),
and using continuation of the solutions over the param-
eter µ. The results are shown in the top left panel of
Fig.1, where the norm of the solutions N =

∫

|u|2dx is
shown as a function of the chemical potential (or prop-
agation constant in optics) µ. In addition, as expected
from the nature of the bifurcation, the linear stability
analysis has been used to illustrate the following: The
emerging new asymmetric (i.e., “symmetry breaking”)
branch of solutions is stable, while the original symmet-
ric branch is unstable beyond the bifurcation point due
to a real eigenvalue λr (see bottom left panel of Fig. 1).

Next, in the same case (s = −1), we consider a dou-
ble well potenial with a weak asymmetry (x0 = 0.5).
In this case, the constants involved in Eqs. (6)-(8) are
found to be A0 = 0.14903, A1 = 0.15618, B = 0.02958,
ω0 = 0.1249 and ω1 = 0.16535, while Γ0 = 0.0407 and
Γ1 = −0.04077. Note that even such a weakly asym-
metric case, renders the right well “shallower”, in the
following sense: the density, or power N (regarding the
ground state of the linear problem), in the right well is
smaller than the one in the left well. Thus, in the nonlin-
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FIG. 1: (Color online) The top panels show the norm of the
solutions of Eq.(1) for attractive nonlinearity (s = −1) as a
function of µ for symmetric (left panel, x0 = 0) and asymmet-
ric double well (right panel, x0 = 0.5). The potential param-
eters are Ω = 0.1, V0 = 1 and w = 0.5. The solid lines denote
the symmetric solution, the dashed-dotted lines denote the
antisymmetric one, while the dashed lines denote the asym-
metric solutions that are generated from the bifurcation at
µc ≈ 0.122 (pitchfork) and µc ≈ 0.009 (saddle-node) respec-
tively. The bottom panels show the maximal real eigenvalue
associated with the linear stability of the symmetric branches.

ear problem, the respective branches that bear the larger
part of the density in the right or in the left well (i.e.,
the ones having, roughly speaking, the shape of a single
pulse in each of the wells) are no longer equivalent. This
results in a significant difference between the asymmetric
and the symmetric case discussed above, namely there is
no longer a pitchfork bifurcation, but instead, there is a
saddle-node bifurcation. This result is shown in the top
right panel of Fig. 1, where N is shown as a function
of µ. It is readily observed that, due to the nature of
the saddle-node bifurcation, two branches (one of which
is stable and the other one is unstable) “collide” at some
critical value of µ = µc (see below) and disappear. These
branches are the more “symmetric” one, that has sup-
port in both wells (see solid line in top left panel of Fig.
2), and the one pertaining to the state having the form
of a single pulse in the shallower well (see dashed line in
the rightmost top panel of Fig. 2). The instability of the
former branch is depicted in the bottom right panel of
Fig. 1, where the maximal real eigenvalue is shown as a
function of µ. On the other hand, there exists also an-
other single-pulse branch supported over the deeper well
(see top third panel of Fig. 2), which persists all the way
to the linear limit. Furthermore, the dash-dotted anti-
symmetric branch of the top right of Fig. 1 is shown in
the second top panel of Fig. 2.

The novel feature described above, namely the asym-
metric breakdown of the pitchfork bifurcation into a
saddle-node one, is a particular feature of asymmetric
double well potentials that, to the best of our knowl-
edge, has not been previously appreciated. Notice that
Eq. (8) predicts that the saddle-node bifurcation oc-
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FIG. 2: (Color online) The steady state solutions of Eq.(1),
(see also Fig. 1) for the focusing, asymmetric case (top panels)
and their linear stability (bottom panels) for µ = 0.05. The
black-dashed line shows the double well potential.
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FIG. 3: (Color online) Same as in Fig.1 but for the repulsive
nonlinearity (s = +1). The dashed-dotted lines denote the
symmetric solution, the solid the antisymmetric, while the
dashed lines denote the asymmetric solutions generated from
the bifurcation at µc ≈ 0.168 (pitchfork) and µc ≈ 0.207
(saddle-node) respectively. Contrary to the case s = −1, the
bifurcations originate from the anti-symmetric branch.

curs at µc = 0.08748, while the numerical result is
µc = 0.09 ± 0.001; apparently the two results are again
in excellent agreement.

Let us now consider the repulsive nonlinearity (s =
+1). In this case, for the symmetric potential (x0 =
0), the pitchfork bifurcation still occurs; however, now it
does not originate from the symmetric branch, but rather
from the anti-symmetric one with (ρ0, ρ1) = (0,

√
N),

giving again rise to symmetry breaking. Analyzing Eq.
(8), we find that this occurs when

N > Nc ≥ ∆ω

3B − A1

, (10)

and for µ = ω0 +3BN = 0.16822, once again in excellent
agreement with the numerical result µc = 0.168(±0.001).

On the other hand, in the same case (s = +1) but
for an asymmetric (x0 = 0.5) double well, the bifurca-
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FIG. 4: (Color online) The steady state solutions of Eq.(1),
(see also Fig. 3) for s = +1 in the asymmetric case (top
panels) and their linear stability (bottom panels) for µ = 0.22.
The black-dashed line shows the double well potential.

tion still originates from anti-phase (between the wells)
solutions, but again (as in the asymmetric case with
s = −1), the bifurcation is of the saddle-node type. This
is theoretically predicted to occur at µc = 0.21342, once
again in very close agreement to the numerical result
µc = 0.207 ± 0.001. The details of the bifurcation di-
agrams, are illustrated in Fig. 3 (analogously to Fig. 1),
while the steady state solutions and their linear stability
are shown in Fig. 4 (analogously to Fig. 2).

Conclusions. In conclusion, we have presented a sys-
tematic analysis based on a Galerkin, two-mode trunca-
tion of the stationary states of symmetric and asymmet-
ric double well potentials. The analysis has been carried
out both for repulsive and attractive nonlinearities and,
as such, can be relevant to a variety of physical contexts;
these include matter-wave physics (most directly), non-

linear optics, as well as other contexts where it is rele-
vant to consider double well potentials in the NLS model
proper. We have demonstrated that our analytical ap-
proach describes quite accurately, both qualitatively and
quantitatively the features of the nonlinear solutions; nu-
merical results were shown to be in excellent agreement
with the analytical predictions.

In the case of a symmetric double well potential, it
has been shown that a symmetry-breaking (pitchfork)
bifurcation of the ground state occurs for attractive non-
linearities, while it is absent for repulsive nonlinearities.
It has also been found that a similar bifurcation of the
first excited state occurs in the relevant branches for re-
pulsive nonlinearities, oppositely to the case of attractive
ones, where such bifurcation does not happen. Addition-
ally, regarding the above feature, we have illustrated that
symmetric potentials are very particular (degenerate)
due to their special characteristic of mirror-equivalence of
the emerging symmetry-breaking states. We have shown
that even weak asymmetries lift this degeneracy and lead
to saddle-node bifurcations instead of pitchfork ones that
were similarly quantified in both attractive and repulsive
nonlinearity contexts.

These results underscore the relevance of analyzing
steady state features of nonlinear models (in the presence
of external potentials) based on the states of the under-
lying linear equations. It would be particularly interest-
ing to examine the extent to which dynamical features
of such models can be captured by similar truncations.
Such studies are currently in progress.
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[12] P. Ziń et al., Phys. Rev. A 73, 022105 (2006).
[13] M. Albiez et al., Phys. Rev. Lett. 95, 010402 (2005).
[14] C. Cambournac et al., Phys. Rev. Lett. 89, 083901

(2002).
[15] P.G. Kevrekidis et al., Phys. Lett. A 340, 275 (2005).
[16] E.B. Davies, Commun. Math Phys. 64, 191 (1979)
[17] R. K. Jackson and M. I. Weinstein, J. Stat. Phys. 116,

881 (2004).
[18] W. H. Aschenbacher et al., J. Math. Phys. 43, 3879

(2002).
[19] T. Kapitula and P.G. Kevrekidis, Nonlinearity 18, 2491

(2005).
[20] C. Raman et al., Phys. Rev. Lett. 83, 2502 (1999); R.

Onofrio et al., Phys. Rev. Lett. 85, 2228 (2000).


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2006

	Symmetry breaking in symmetric and asymmetric double-well potentials
	G Theocharis
	PG Kevrekidis
	DJ Frantzeskakis
	P Schmelcher
	Recommended Citation


	tmp.1292355322.pdf.HkQz0

