85 research outputs found

    Cucurbitacin B Causes Increased Radiation Sensitivity of Human Breast Cancer Cells via G2/M Cell Cycle Arrest

    Get PDF
    Purpose. To explore the effects of cucurbitacin B on the radiation survival of human breast cancer cells and to elucidate the cellular mechanism of radiosensitization if any. Materials and Methods. Human breast carcinoma cell lines were treated with cucurbitacin B before irradiation with 0–10 Gy of 137Cs gamma rays. The effect of cucurbitacin B on cell-survival following irradiation was evaluated by colony-forming assay. Cell cycle distributions were investigated using flow cytometry. Real-time PCR and western blots were performed to investigate the expression of cell cycle checkpoints. Results. Cucurbitacin B inhibited breast cancer cell proliferation in a dose-dependent manner. Only MDA-MB-231 and MCF7:5C cells but not SKBR-3 cells were radiosensitized by cucurbitacin B. Flow cytometric analysis for DNA content indicated that cucurbitacin B resulted in G2/M arrest in MDA-MB-231 and MCF7:5C but not SKBR-3 cells. Moreover, Real-time PCR and western blot analysis demonstrated upregulated p21 expression before irradiation, a likely cause of the cell cycle arrest. Conclusion. Taken together, these findings suggest that cucurbitacin B causes radiosensitization of some breast cancer cells, and that cucurbitacin B induced G2/M arrest is an important mechanism. Therefore, combinations of cucurbitacin B with radiotherapy may be appropriate for experimental breast cancer treatment

    Synthetic curcuminoid analogues abrogate oxidationinduced cell death and promote myogenic differentiation of C2C12 mouse myoblasts

    Get PDF
    Purpose: To investigate the ability of two synthetic curcuminoid analogues, 6-(4-hydroxy-3-methoxyphenethyl)-5-(3-(4-hydroxy-3-methoxyphenyl)propanoyl)-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (compound A) and 6-(4-hydroxy-3-methoxyphenethyl)-4-(4-hydroxy-3-methoxyphenyl)-5-(3-(4- hydroxy-3-methoxyphenyl)propanoyl)-3,4-dihydropyrimidin-2(1H)-one (compound B), to protect against oxidation-induced cell death and the potential to enhance proliferation and differentiation of C2C12 myoblast cells.Methods: Antioxidant activity of curcuminoid analogues was evaluated by DPPH assay. The cytotoxic activity of the compounds (0 - 25 mM) on C2C12 myoblasts was determined by MTT assay while the effect on cell proliferation was assessed by BrdU uptake. Myoblast cell differentiation was measured by the formation of myotubes and myosin heavy chain (MHC) protein expression using immunofluorescence staining and Western blotting, respectively.Results: Both curcuminoid analogues exhibited strong anti-oxidant activity of up to 3-fold greater than that of ascorbic acid, and were non-toxic to C2C12 myoblasts at concentrations up to 25 mM. Furthermore, these curcuminoid analogues mitigated myoblast cell death induced by oxidative stress. Notably, both analogues (10 nM) had no effect on cell proliferation. However, only compound A significantly enhanced myoblast differentiation comparable to the effects of dihydrotestosterone (1 μM) and estradiol (10 nM).Conclusion: The results suggest that compound A may serve as a lead compound for the development of suitable therapeutic agents for muscle injuries and diseases.Keywords: Curcuminoid analogues, Antioxidant, Cell proliferation, Cell differentiation, Myoblast

    5,6,7,4’-Tetramethoxyflavanone protects against neuronal degeneration induced by dexamethasone by attenuating amyloidogenesis in mice

    Get PDF
    Long-term exposure to high glucocorticoid levels induces memory impairment and neurodegeneration in Alzheimer’s disease (AD) by increasing the expression of amyloid β and tau hyperphosphorylation (pTau). Previous studies showed beneficial effects of flavonoids in neurodegenerative models. 5,6,7,4'-tetramethoxyflavanone (TMF) is one of the active ingredients in Chromolaena odorata (L.), which R. M. King and H. Rob discovered in Thailand. This study focused on the effects of TMF on dexamethasone (DEX)-induced neurodegeneration, amyloidogenesis, pTau expression, neuron synaptic function, and cognitive impairment and the potential mechanisms involved. Mice were intraperitoneally administered DEX for 28 days before being treated with TMF for 30 days. The mice were randomly divided into six groups (twelve mice per group): control; TMF administration (40 mg/kg); pioglitazone administration (20 mg/kg); DEX administration (60 mg/kg); DEX administration plus TMF; and DEX administration plus pioglitazone. Behavioral tests showed that TMF significantly attenuated the memory impairment triggered by DEX. Consistently, TMF reduced DEX-induced amyloid beta production by reducing the expression of beta-site APP cleaving enzyme 1 (BACE1) and presenilin 1 (PS1), whereas it increased the gene expression of a disintegrin and metalloprotease 10 (ADAM10). TMF treatment also decreased pTau expression, inhibited phosphonuclear factor-kappa B (pNF-kB) and inhibited glycogen synthase kinase 3 (GSK-3) activity by increasing GSK3 phosphorylation (pGSK3). In addition, TMF also improved synaptic function by increasing the expression of synaptophysin (Syn) and postsynaptic density protein 95 (PSD95) while decreasing acetylcholine esterase activity. Conclusively, TMF provided neuroprotection against DEX-induced neurodegeneration. These findings suggest that TMF might have potential as a therapeutic drug for AD

    Antiproliferative Effects of Cucurbitacin B in Breast Cancer Cells: Down-Regulation of the c-Myc/hTERT/Telomerase Pathway and Obstruction of the Cell Cycle

    Get PDF
    Naturally occurring cucurbitacins have been shown to have anticancer, antimicrobial and anti-inflammatory activities. In this study, we determined the effects of cucurbitacin B extracted from the Thai herb Trichosanthes cucumerina L. on telomerase regulation in three human breast cancer cell lines (T47D, SKBR-3, and MCF-7) and a mammary epithelium cell line (HBL-100). Cell viability after treatment with cucurbitacin B, which is an active ingredient of this herb, was assessed. Telomeric Repeat Amplification Protocol (TRAP) assays and RT-PCR (qualitative and realtime) were performed to investigate activity of telomerase as well as expression of human telomerase reverse transcriptase (hTERT) and c-Myc. The c-Myc protein level was also determined in SKBR-3 and HBL-100 cells. Our results show that the cucurbitacin B inhibits growth and telomerase activity in the three breast cancer cell lines and exerts an obvious inhibitory effect in the estrogen receptor (ER)-negative breast cancer SKBR-3 cells. The expression of hTERT and c-Myc were also inhibited by cucurbitacin B, In addition, a clear reduction of c-Myc protein was observed after treatment in SKBR-3 cells even with a concentration of cucurbitacin B that was ten-times lower compared to the concentration used for HBL-100. Our findings imply that cucurbitacin B exerts an anticancer effect by inhibiting telomerase via down regulating both the hTERT and c-Myc expression in breast cancer cells

    Iridoid glucosides from Barleria lupulina

    No full text

    Ecdysteroids from a Zoanthus

    No full text

    Antimycobacterial activity of cinnamate-based esters of the triterpenes betulinic, oleanolic and ursolic acids

    Get PDF
    Betulinic acid, oleanolic acid and ursolic acid have been modified at the C-3 position to cinnamate-based esters and in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Ra has been determined. The results indicated that modification of the parent structures of betulinic acid, oleanolic acid and ursolic acid to the p-coumarate and, in the case of the latter two triterpenes, the ferulate ester analogues resulted in high antimycobacterial activity. Structure–activity relationships within the lupane, oleanane and ursane analogues and between these triterpenes are discussed
    corecore