19 research outputs found

    DECENTRALIZED NETWORK BANDWIDTH PREDICTION AND NODE SEARCH

    Get PDF
    As modern computing becomes increasingly data-intensive and distributed, it is becoming crucial to effectively manage and exploit end-to-end network bandwidth information from hosts on wide-area networks. Inspired by the finding that Internet bandwidth can be represented approximately in a tree metric space, we focus on three specific research problems. First, we have designed a decentralized algorithm for network bandwidth prediction. The algorithm embeds the bandwidth information as distance in an edge-weighted tree, without performing full n-to-n measurements. No central and fixed infrastructure is required. Each joining node performs a limited number of sampling measurements. Second, we designed a decentralized algorithm to search for a centroid node that has high-bandwidth connections with a given set of nodes. The algorithm can find a centroid accurately and efficiently using the bandwidth data produced by the prediction algorithm. Last, we have designed another type of decentralized search algorithm to find a cluster of nodes that have high-bandwidth interconnections. While the clustering problem is NP-complete in a general graph, our algorithm runs in polynomial time with the bandwidth data predicted in a tree metric space. We provide proofs that our algorithms for bandwidth prediction and node search have perfect accuracy and high scalability when a network is modeled as a tree metric space. Also, experimental results with real-world data sets validate the high accuracy and scalability of our approaches

    VOICE USER INTERFACE BASED PERMISSION GRANT SYSTEM FOR VEHICLES

    Get PDF
    A vehicle (e.g., automobile, motorcycle, a bus, a recreational vehicle (RV), a semi-trailer truck, a tractor or other type of farm equipment, a train, a plane, a helicopter, etc.) may include a so-called “head unit” that provides a voice user interface (VUI) by which to enable spoken human interaction with the head unit to respond to requests for permission (e.g., to access user personal data, to enable the usage of third-party services, etc.). For example, responsive to detecting that an action to be performed has not been granted permission, the head unit may produce (e.g., via one or more speakers) an audio prompt requesting the required permission. A user may answer the audio prompt with an audio input in the form of human speech, which the head unit may receive (e.g., via one or more microphones). The head unit may parse the audio input using speech recognition (e.g., a natural language understanding module) to identify a valid input (e.g., grant or deny permission to perform an action, request additional information, etc.) to which the audio input corresponds and, responsive to identifying a valid input, the head unit may perform the action (e.g., granting or denying permission to perform the action, providing additional information, etc.) associated with the valid input. In this way, the head unit may enable the user to control the granting of permissions via the VUI, which may be particularly beneficial in vehicle settings in which the user is operating the vehicle, as the hands-free, eyes-free user experience may reduce distractions to the user while operating the vehicle and thereby promote safety

    Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation

    Get PDF
    The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells’ ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover.National Heart, Lung, and Blood Institute (Grant HL090856-01)Singapore-MIT Allianc

    Regenerative potential of mouse embryonic stem cell-derived PDGFRα+ cardiac lineage committed cells in infarcted myocardium

    Get PDF
    BACKGROUND Pluripotent stem cell-derived cardiomyocytes (CMs) have become one of the most attractive cellular resources for cell-based therapy to rescue damaged cardiac tissue. AIM We investigated the regenerative potential of mouse embryonic stem cell (ESC)- derived platelet-derived growth factor receptor-a (DGFRα)+ cardiac lineagecommitted cells (CLCs), which have a proliferative capacity but are in a morphologically and functionally immature state compared with differentiated CMs. METHODS We induced mouse ESCs into PDGFRα+ CLCs and αMHC+ CMs using a combination of the small molecule cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197. We implanted PDGFRα+ CLCs and differentiated αMHC+ CMs into a myocardial infarction (MI) murine model and performed functional analysis using transthoracic echocardiography (TTE) and histologic analysis. RESULTS Compared with the untreated MI hearts, the anterior and septal regional wall motion and systolic functional parameters were notably and similarly improved in the MI hearts implanted with PDGFRα+ CLCs and αMHC+ CMs based on TTE. In histologic analysis, the untreated MI hearts contained a thinner ventricular wall than did the controls, while the ventricular walls of MI hearts implanted with PDGFRα+ CLCs and αMHC+ CMs were similarly thicker compared with that of the untreated MI hearts. Furthermore, implanted PDGFRα+ CLCs aligned and integrated with host CMs and were mostly differentiated into α-actinin+ CMs, and they did not convert into CD31+ endothelial cells or aSMA+ mural cells. CONCLUSION PDGFRα+ CLCs from mouse ESCs exhibiting proliferative capacity showed a regenerative effect in infarcted myocardium. Therefore, mouse ESC-derived PDGFRα+ CLCs may represent a potential cellular resource for cardiac regeneration. © The Author(s) 201

    Dynamics Of T Cells On Endothelial Layers Aligned By Nanostructured Surfaces

    No full text
    In this work, well-aligned endothelial cell (EC) layers were prepared by culturing ECs on surfaces containing nanoscale ridges/grooves fabricated by UV-assisted capillary force lithography. Then, the dynamics of T cells on well-aligned ECs were compared with that on randomly oriented ECs cultured on flat surfaces. With this experimental setting, we demonstrated for the first time that EC alignment is important for the regulation of transendothelial migration (TEM) of T cells, a critical step for leukocyte infiltration; T cells preferentially underwent TEM at the junctions surrounded by more than three ECs only if ECs surrounding those junctions were poorly aligned. As a result, TEM of T cells occurred more quickly and frequently on randomly oriented ECs cultured on flat surfaces than on well-aligned ECs cultured on nanostructured surfaces. This result will suggest a new strategy for the design of synthetic small diameter vascular grafts and extend our current knowledge of leukocyte dynamics on an inflamed endothelium. (C) 2011 Elsevier Ltd. All rights reserved.X111813sciescopu

    Correlated Magnetic Weyl Semimetal State in Strained Pr2Ir2O7

    No full text
    © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbHCorrelated topological phases (CTPs) with interplay between topology and electronic correlations have attracted tremendous interest in condensed matter physics. Therein, correlated Weyl semimetals (WSMs) are rare in nature and, thus, have so far been less investigated experimentally. In particular, the experimental realization of the interacting WSM state with logarithmic Fermi velocity renormalization has not been achieved yet. Here, experimental evidence of a correlated magnetic WSM state with logarithmic renormalization in strained pyrochlore iridate Pr2Ir2O7 (PIO) which is a paramagnetic Luttinger semimetal in bulk, is reported. Benefitting from epitaxial strain, “bulk-absent” all-in–all-out antiferromagnetic ordering can be stabilized in PIO film, which breaks time-reversal symmetry and leads to a magnetic WSM state. With further analysis of the experimental data and renormalization group calculations, an interacting Weyl liquid state with logarithmically renormalized Fermi velocity, similar to that in graphene, is found, dressed by long-range Coulomb interactions. This work highlights the interplay of strain, magnetism, and topology with electronic correlations, and paves the way for strain-engineering of CTPs in pyrochlore iridates.11Nsciescopu

    Correlated Magnetic Weyl Semimetal State in Strained Pr 2

    No full text
    © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbHCorrelated topological phases (CTPs) with interplay between topology and electronic correlations have attracted tremendous interest in condensed matter physics. Therein, correlated Weyl semimetals (WSMs) are rare in nature and, thus, have so far been less investigated experimentally. In particular, the experimental realization of the interacting WSM state with logarithmic Fermi velocity renormalization has not been achieved yet. Here, experimental evidence of a correlated magnetic WSM state with logarithmic renormalization in strained pyrochlore iridate Pr2Ir2O7 (PIO) which is a paramagnetic Luttinger semimetal in bulk, is reported. Benefitting from epitaxial strain, “bulk-absent” all-in–all-out antiferromagnetic ordering can be stabilized in PIO film, which breaks time-reversal symmetry and leads to a magnetic WSM state. With further analysis of the experimental data and renormalization group calculations, an interacting Weyl liquid state with logarithmically renormalized Fermi velocity, similar to that in graphene, is found, dressed by long-range Coulomb interactions. This work highlights the interplay of strain, magnetism, and topology with electronic correlations, and paves the way for strain-engineering of CTPs in pyrochlore iridates.11Nsciescopu

    Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis.

    No full text
    RATIONALE: The Notch pathway stabilizes sprouting angiogenesis by favoring stalk cells over tip cells at the vascular front. Because tip and stalk cells have different properties in morphology and function, their transcriptional regulation remains to be distinguished. Transcription factor Sox17 is specifically expressed in endothelial cells, but its expression and role at the vascular front remain largely unknown. OBJECTIVE: To specify the role of Sox17 and its relationship with the Notch pathway in sprouting angiogenesis. METHODS AND RESULTS: Endothelial-specific Sox17 deletion reduces sprouting angiogenesis in mouse embryonic and postnatal vascular development, whereas Sox17 overexpression increases it. Sox17 promotes endothelial migration by destabilizing endothelial junctions and rearranging cytoskeletal structure and upregulates expression of several genes preferentially expressed in tip cells. Interestingly, Sox17 expression is suppressed in stalk cells in which Notch signaling is relatively high. Notch activation by overexpressing Notch intracellular domain reduces Sox17 expression both in primary endothelial cells and in retinal angiogenesis, whereas Notch inhibition by delta-like ligand 4 (Dll4) blockade increases it. The Notch pathway regulates Sox17 expression mainly at the post-transcriptional level. Furthermore, endothelial Sox17 ablation rescues vascular network from excessive tip cell formation and hyperbranching under Notch inhibition in developmental and tumor angiogenesis. CONCLUSIONS: Our findings demonstrate that the Notch pathway restricts sprouting angiogenesis by reducing the expression of proangiogenic regulator Sox17
    corecore