93 research outputs found

    Expression of microRNAs following radiation therapy and association with severity of radiotherapy‑induced toxicity among patients with prostate adenocarcinoma: A systematic review and meta‑analysis

    Get PDF
    Radiation‑induced normal tissue toxicity is a common acute and chronic outcome of radiotherapy (RT) for prostate cancer (PCa). There are currently no existing pre‑assessments before treatment to predict acute and late RT‑induced toxicity. Novel predictive blood biomarkers in radiation oncology may improve treatment decision‑making and therapeutic monitoring for patients with PCa. A comprehensive systematic search of microRNA (miRNA/miR) profiling studies published in PubMed, Science Direct and Google Scholar was performed. The present systematic review, supported by meta‑analysis, summarises key findings and discusses the results of prospective clinical studies investigating miRNA expression levels and their association with RT‑induced toxicity in PCa. Out of seven clinical studies, six highlighted levels of 10 miRNAs changing in plasma, serum or peripheral blood mononuclear cells during RT. The post‑RT expression levels of miRNA‑132‑5p, miRNA‑1‑3p, miRNA‑410 and miRNA‑221 were increased, and miRNA‑23a‑3p expression was decreased among patients with low‑grade RT‑induced toxicity. Furthermore, in patients with high‑grade RT toxicity, miRNA‑197‑3p, miRNA‑151a‑5p, miRNA‑18b‑5p, miRNA‑99a and miRNA‑21 expression was increased, while miRNA‑132‑5p expression was decreased. The present miRNA meta‑analysis could be the focus of future studies to identify their potential clinical value as PCa biomarkers and therapeutic mediators in RT‑induced toxicity. The variations in miRNA levels post‑RT could be used as predictive biomarkers of RT‑induced toxicity. However, further extensive validation is required to establish the relationship between miRNA expression levels and RT‑induced toxicity in PCa and to confirm their predictive value

    Transforming growth factor-β1 and SMAD signalling pathway in the small airways of smokers and patients with COPD: potential role in driving fibrotic type-2 epithelial mesenchymal transition

    Get PDF
    BackgroundCOPD is a common disease characterized by respiratory airflow obstruction. TGF-β1 and SMAD pathway is believed to play a role in COPD pathogenesis by driving epithelial mesenchymal transition (EMT).MethodsWe investigated TGF-β1 signalling and pSmad2/3 and Smad7 activity in resected small airway tissue from patients with; normal lung function and a smoking history (NLFS), current smokers and ex-smokers with COPD GOLD stage 1 and 2 (COPD-CS and COPD-ES) and compared these with normal non-smoking controls (NC). Using immunohistochemistry, we measured activity for these markers in the epithelium, basal epithelium, and reticular basement membrane (RBM). Tissue was also stained for EMT markers E-cadherin, S100A4 and vimentin.ResultsThe Staining of pSMAD2/3 was significantly increased in the epithelium, and RBM of all COPD groups compared to NC (p <0.0005). There was a less significant increase in COPD-ES basal cell numbers compared to NC (p= 0.02). SMAD7 staining showed a similar pattern (p <0.0001). All COPD group levels of TGF-β1 in the epithelium, basal cells, and RBM cells were significantly lower than NC (p <0.0001). Ratio analysis showed a disproportionate increase in SMAD7 levels compared to pSMAD2/3 in NLFS, COPD-CS and COPD-ES. pSMAD negatively correlated with small airway calibre (FEF25–75%; p= 0.03 r= -0.36). EMT markers were active in the small airway epithelium of all the pathological groups compared to patients with COPD.ConclusionActivation of the SMAD pathway via pSMAD2/3 is triggered by smoking and active in patients with mild to moderate COPD. These changes correlated to decline in lung function. Activation of the SMADs in the small airways is independent of TGF-β1, suggesting factors other than TGF-β1 are driving these pathways. These factors may have implications for small airway pathology in smokers and COPD through the process of EMT, however more mechanistic work is needed to prove these correlations

    Vessel-Associated Transforming Growth Factor-Beta1 (TGF-β1) Is Increased in the Bronchial Reticular Basement Membrane in COPD and Normal Smokers

    Get PDF
    BACKGROUND: Transforming growth factor-beta1 (TGF-β1) is a multipotential cytokine with angiogenic activity. There are only limited data about its role in airway remodeling in COPD. We have previously shown that the reticular basement membrane (Rbm) is hypervascular in the airways of current smokers either with or without chronic obstructive pulmonary disease (COPD). This study evaluated TGF-β1 immunostaining in the Rbm and its relationship to vascularity in smokers with or without COPD. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial biopsies from 15 smokers with normal lung function, 19 current and 14 ex-smokers with COPD were immunostained for TGF-β1 antibody and compared to 17 healthy controls. The percentage area of tissue and also number and area of vessels staining positively for TGF-β1 were measured and compared between groups. Some bronchial biopsies from current smoking COPD subjects were also stained for phosphorylated (active) Smad2/3. Epithelial TGF- β1 staining was not different between COPD current smokers and normal controls. TGF-β1 stained vessels in the Rbm were increased in smokers with normal lung function, current smoking COPD and ex-smokers with COPD compared to controls [median (range) for number of vessels/mm Rbm 2.5 (0.0-12.7), 3.4 (0.0-8.1) and 1.0 (0.0-6.3) vs. 0.0 (0.0-7.0), p<0.05]. Percentage of vessels stained was also increased in these clinical groups. Preliminary data suggest that in current smoking COPD subjects endothelial cells and cells in the Rbm stain positively for phosphorylated Smad2/3 suggesting TGF-β1 is functionally active in this situation. CONCLUSIONS/SIGNIFICANCE: Vessel-associated TGF-β1 activity is increased in the bronchial Rbm in smokers and especially those with COPD

    The ER Stress/UPR Axis in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis.

    Get PDF
    Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    Therapeutic Modalities for Asthma, COPD, and Pathogenesis of COVID-19: Insights from the Special Issue

    No full text
    The human lung is a vital organ, which is vulnerable to outside insults and injuries [...

    Zinc transporters and insulin resistance: therapeutic implications for type 2 diabetes and metabolic disease

    Get PDF
    Abstract Background Zinc is a metal ion that is essential for growth and development, immunity, and metabolism, and therefore vital for life. Recent studies have highlighted zinc’s dynamic role as an insulin mimetic and a cellular second messenger that controls many processes associated with insulin signaling and other downstream pathways that are amendable to glycemic control. Main body Mechanisms that contribute to the decompartmentalization of zinc and dysfunctional zinc transporter mechanisms, including zinc signaling are associated with metabolic disease, including type 2 diabetes. The actions of the proteins involved in the uptake, storage, compartmentalization and distribution of zinc in cells is under intense investigation. Of these, emerging research has highlighted a role for several zinc transporters in the initiation of zinc signaling events in cells that lead to metabolic processes associated with maintaining insulin sensitivity and thus glycemic homeostasis. Conclusion This raises the possibility that zinc transporters could provide novel utility to be targeted experimentally and in a clinical setting to treat patients with insulin resistance and thus introduce a new class of drug target with utility for diabetes pharmacotherapy
    corecore