10 research outputs found
Quantum Computation and Spin Electronics
In this chapter we explore the connection between mesoscopic physics and
quantum computing. After giving a bibliography providing a general introduction
to the subject of quantum information processing, we review the various
approaches that are being considered for the experimental implementation of
quantum computing and quantum communication in atomic physics, quantum optics,
nuclear magnetic resonance, superconductivity, and, especially, normal-electron
solid state physics. We discuss five criteria for the realization of a quantum
computer and consider the implications that these criteria have for quantum
computation using the spin states of single-electron quantum dots. Finally, we
consider the transport of quantum information via the motion of individual
electrons in mesoscopic structures; specific transport and noise measurements
in coupled quantum dot geometries for detecting and characterizing
electron-state entanglement are analyzed.Comment: 28 pages RevTeX, 4 figures. To be published in "Quantum Mesoscopic
Phenomena and Mesoscopic Devices in Microelectronics," eds. I. O. Kulik and
R. Ellialtioglu (NATO Advanced Study Institute, Turkey, June 13-25, 1999
Topological Quantum Gates with Quantum Dots
We present an idealized model involving interacting quantum dots that can
support both the dynamical and geometrical forms of quantum computation. We
show that by employing a structure similar to the one used in the Aharonov-Bohm
effect we can construct a topological two-qubit phase-gate that is to a large
degree independent of the exact values of the control parameters and therefore
resilient to control errors. The main components of the setup are realizable
with present technology.Comment: 8 pages, 3 figures, submitted to Jour. of Opt. B (special issue on
Quantum Computing
Semiclassical theory of spin-polarized shot noise in mesoscopic diffusive conductors
We study fluctuations of spin-polarized currents in a three-terminal
spin-valve system consisting of a diffusive normal metal wire connected by
tunnel junctions to three ferromagnetic terminals. Based on a spin-dependent
Boltzmann-Langevin equation, we develop a semiclassical theory of charge and
spin currents and the correlations of the currents fluctuations. In the three
terminal system, we show that current fluctuations are strongly affected by the
spin-flip scattering in the normal metal and the spin polarizations of the
terminals, which may point in different directions. We analyze the dependence
of the shot noise and the cross-correlations on the spin-flip scattering rate
in the full range of the spin polarizations and for different magnetic
configurations. Our result demonstrate that noise measurements in
multi-terminal devices allow to determine the spin-flip scattering rate by
changing the polarizations of ferromagnetic terminals.Comment: 12 pages, 5 figure
Andreev-Tunneling, Coulomb Blockade, and Resonant Transport of Non-Local Spin-Entangled Electrons
We propose and analyze a spin-entangler for electrons based on an s-wave
superconductor coupled to two quantum dots each of which is tunnel-coupled to
normal Fermi leads. We show that in the presence of a voltage bias and in the
Coulomb blockade regime two correlated electrons provided by the Andreev
process can coherently tunnel from the superconductor via different dots into
different leads. The spin-singlet coming from the Cooper pair remains preserved
in this process, and the setup provides a source of mobile and nonlocal
spin-entangled electrons. The transport current is calculated and shown to be
dominated by a two-particle Breit-Wigner resonance which allows the injection
of two spin-entangled electrons into different leads at exactly the same
orbital energy, which is a crucial requirement for the detection of spin
entanglement via noise measurements. The coherent tunneling of both electrons
into the same lead is suppressed by the on-site Coulomb repulsion and/or the
superconducting gap, while the tunneling into different leads is suppressed
through the initial separation of the tunneling electrons. In the regime of
interest the particle-hole excitations of the leads are shown to be negligible.
The Aharonov-Bohm oscillations in the current are shown to contain single- and
two-electron periods with amplitudes that both vanish with increasing Coulomb
repulsion albeit differently fast.Comment: 11 double-column pages, 2 figures, REVTeX, minor revision
Spin current shot noise as a probe of interactions in mesoscopic systems
It is shown that the spin resolved current shot noise can probe attractive or
repulsive interactions in mesoscopic systems. This is illustrated in two
physical situations : i) a normal-superconducting junction where the spin
current noise is found to be zero, and ii) a single electron transistor (SET),
where the spin current noise is found to be Poissonian. Repulsive interactions
may also lead to weak attractive correlations (bunching of opposite spins) in
conditions far from equilibrium. Spin current shot noise can be used to measure
the spin relaxation time , and a set-up is proposed in a quantum dot
geometry.Comment: 5 pages, 4 Figures, revised version, added reference
Noise of entangled electrons : bunching and antibunching
Addressing the feasibility of quantum communication with entangled electrons in an interacting many-body environment, we propose an interference experiment using a scattering setup with an entangler and a beam splitter. It is shown that, due to electron-electron interaction, the spin correlation of the entangled singlet and triplet states is reduced by z(F)(2) in a conductor described by Fermi liquid theory. We calculate the quasiparticle weight factor z(F) for a two-dimensional electron system. The current noise for electronic singlet states turns out to be enhanced (bunching behavior), while it is reduced for triplet states (antibunching). Within standard scattering theory, we find that the Fano factor (noise-to-current ratio) for singlets is twice as large as for independent classical particles and is reduced to zero for triplets
Noise of a quantum dot system in the cotunneling regime
We study the noise of the cotunneling current through one or several tunnel-coupled quantum dots in the Coulomb blockade regime. The various regimes of weak and strong, elastic and inelastic cotunneling are analyzed for quantum dot systems (QDS) with few-level, nearly degenerate, and continuous electronic spectra. We iind that in contrast to sequential tunneling, where the noise is either Poissonian (due to uncorrelated tunneling events) or sub-Poissonian (suppressed by charge conservation on the QDS), the noise in inelastic cotunneling can be super-Poissonian due to switching between QDS states carrying currents of different strengths. In the case of weak cotunneling we prove a nonequilibrium fluctuation-dissipation theorem: which leads to a universal expression for the noise-to-current ratio (Fano factor). In order to investigate strong cotunneling we develop a microscopic theory of cotunneling based on the density-operator formalism and using the projection operator technique. The master equation for the QDS and the expressions for current and noise in cotunneling in terms of the stationary state of the QDS are derived and applied to QDS with a nearly degenerate and continuous spectrum