662 research outputs found

    Adherence of the rotating vortex lattice in the noncentrosymmetric superconductor Ru7_7B3_3 to the London model

    Get PDF
    The noncentrosymmetric superconductor R7_7B3_3 has in previous studies demonstrated remarkably unusual behaviour in its vortex lattice (VL), where the nearest neighbour directions of the vortices dissociate from the crystal lattice and instead show a complex field-history dependence, and the VL rotates as the field is changed. In this study, we look at the VL form factor of Ru7_7B3_3 during this field-history dependence, to check for deviations from established models, such as the London model. We find that the data is well described by the anisotropic London model, which is in accordance with theoretical predictions that the alterations to the structure of the vortices due to broken inversion symmetry should be small. From this, we also extract values for the penetration depth and coherence length

    Adherence of the rotating vortex lattice in the noncentrosymmetric superconductor Ru7_{7}B3_{3} to the London model

    Full text link
    The noncentrosymmetric superconductor Ru7_7B3_3 has in previous studies demonstrated remarkably unusual behaviour in its vortex lattice, where the nearest neighbour directions of the vortices dissociate from the crystal lattice and instead show a complex field-history dependence, and the vortex lattice rotates as the field is changed. In this study, we look at the vortex lattice form factor of Ru7_7B3_3 during this field-history dependence, to check for deviations from established models, such as the London model. We find that the data is well described by the anisotropic London model, which is in accordance with theoretical predictions that the alterations to the structure of the vortices due to broken inversion symmetry should be small. From this, we also extract values for the penetration depth and coherence length

    Adherence of the rotating vortex lattice in the noncentrosymmetric superconductor Ru7_7B3_3 to the London model

    Get PDF
    The noncentrosymmetric superconductor Ru7_7B3_3 has in previous studies demonstrated remarkably unusual behaviour in its vortex lattice, where the nearest neighbour directions of the vortices dissociate from the crystal lattice and instead show a complex field-history dependence, and the vortex lattice rotates as the field is changed. In this study, we look at the vortex lattice form factor of Ru7_7B3_3 during this field-history dependence, to check for deviations from established models, such as the London model. We find that the data is well described by the anisotropic London model, which is in accordance with theoretical predictions that the alterations to the structure of the vortices due to broken inversion symmetry should be small. From this, we also extract values for the penetration depth and coherence length

    Singlet-triplet mixing in the order parameter of the noncentrosymmetric superconductor Ru7_{7}B3_{3}

    Get PDF
    One of the key effects which is predicted to arise in superconductors without a centre of inversion is the mixing of singlet and triplet order parameters, which are no longer good quantum numbers on their own due to parity. We have probed the gap structure in the noncentrosymmetric superconductor Ru7_7B3_3, through small-angle neutron diffraction from the vortex lattice, in order to search for the proposed mixed order parameter. We find that the measured temperature dependence of the vortex-lattice form factor is well characterised by a model constructed to describe the effects of broken inversion symmetry on the superconducting state, indicating the presence of a mixed singlet-triplet gap and confirming the theoretical predictions

    Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    Get PDF
    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD <2.0 Å), the DPM-HMM method performs as well or better than the best templates, demonstrating that our automated method recaptures these canonical loops without inclusion of any IgG specific terms or manual intervention. In cases with poor or few good templates (mean RMSD >7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/

    Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations

    Get PDF
    Correlations between mean transverse momentum and anisotropic flow coefficients or are measured as a function of centrality in Pb–Pb and Xe–Xe collisions at sqrt(sNN) = 5.02 TeV and 5.44 TeV, respectively, with ALICE. In addition, the recently proposed higher-order correlation between [pt], v2, and v3 is measured for the first time, which shows an anticorrelation for the presented centrality ranges. These measurements are compared with hydrodynamic calculations using IP-Glasma and TRENTO initial-state shapes, the former based on the Color Glass Condensate effective theory with gluon saturation, and the latter a parameterized model with nucleons as the relevant degrees of freedom. The data are better described by the IP-Glasma rather than the TRENTO based calculations. In particular, Trajectum and JETSCAPE predictions, both based on the TRENTO initial state model but with different parameter settings, fail to describe the measurements. As the correlations between [pt] and vn are mainly driven by the correlations of the size and the shape of the system in the initial state, these new studies pave a novel way to characterize the initial state and help pin down the uncertainty of the extracted properties of the quark–gluon plasma recreated in relativistic heavy-ion collisions

    Measurement of the Lifetime and Λ Separation Energy of _{Λ}^{3}H

    Get PDF
    The most precise measurements to date of the _{Λ}^{3}H lifetime τ and Λ separation energy B_{Λ} are obtained using the data sample of Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV collected by ALICE at the LHC. The _{Λ}^{3}H is reconstructed via its charged two-body mesonic decay channel (_{Λ}^{3}H→^{3}He+π^{-} and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)]  ps and B_{Λ}=[102±63(stat)±67(syst)]  keV are compatible with predictions from effective field theories and confirm that the _{Λ}^{3}H structure is consistent with a weakly bound system

    General balance functions of identified charged hadron pairs of (pi,K,p) in Pb-Pb collisions at 2.76 TeV

    Get PDF
    First measurements of balance functions (BFs) of all combinations of identified charged hadron ( π , K, p) pairs in Pb–Pb collisions at √sNN = 2.76 TeV recorded by the ALICE detector are presented. The BF measurements are carried out as two-dimensional differential correlators versus the relative rapidity (delta-y) and azimuthal angle (delta-φ) of hadron pairs, and studied as a function of collision centrality. The delta-φ dependence of BFs is expected to be sensitive to the light quark diffusivity in the quark–gluon plasma. While the BF azimuthal widths of all pairs substantially decrease from peripheral to central collisions, the longitudinal widths exhibit mixed behaviors: BFs of π π and cross-species pairs narrow significantly in more central collisions, whereas those of KK and pp are found to be independent of collision centrality. This dichotomy is qualitatively consistent with the presence of strong radial flow effects and the existence of two stages of quark production in relativistic heavy-ion collisions. Finally, the first measurements of the collision centrality evolution of BF integrals are presented, with the observation that charge balancing fractions are nearly independent of collision centrality in Pb–Pb collisions. Overall, the results presented provide new and challenging constraints for theoretical models of hadron production and transport in relativistic heavy-ion collisions

    Measurement of the non-prompt D-meson fraction as a function of multiplicity in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The fractions of non-prompt (i.e. originating from beauty-hadron decays) D0 and D+ mesons with respect to the inclusive yield are measured as a function of the charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV with the ALICE detector at the LHC. The results are reported in intervals of transverse momentum (pT) and integrated in the range 1 < pT < 24 GeV/c. The fraction of non-prompt D0 and D+ mesons is found to increase slightly as a function of pT in all the measured multiplicity intervals, while no significant dependence on the charged- particle multiplicity is observed. In order to investigate the production and hadronisation mechanisms of charm and beauty quarks, the results are compared to PYTHIA 8 as well as EPOS 3 and EPOS 4 Monte Carlo simulations, and to calculations based on the colour glass condensate including three-pomeron fusion
    corecore