5,271 research outputs found

    Fundamental Magnetic Properties and Structural Implications for Nanocrystalline Fe-Ti-N Thin Films

    Full text link
    The magnetization (M) as a function of temperature (T) from 2 to 300 K and in-plane field (H) up to 1 kOe, room temperature easy and hard direction in-plane field hysteresis loops for fields between -100 and +100 Oe, and 10 GHz ferromagnetic resonance (FMR) profiles have been measured for a series of soft-magnetic nano-crystalline 50 nm thick Fe-Ti-N films made by magnetron sputtering in an in-plane field. The nominal titanium concentration was 3 at. % and the nitrogen concentrations (xN) ranged from zero to 12.7 at. %. The saturation magnetization (Ms) vs. T data and the extracted exchange parameters as a function of xN are consistent with a lattice expansion due to the addition of interstitial nitrogen in the body-centered-cubic (bcc) lattice and a structural transition to body-centered-tetragonal (bct) in the 6-8 at. % nitrogen range. The hysteresis loop and FMR data show a consistent picture of the changes in both the uniaxial and cubic anisotropy as a function of xN. Films with xN > 1.9 at. % show an overall uniaxial anisotropy, with an anisotropy field parameter Hu that increases with xN. The corresponding dispersion averaged uniaxial anisotropy energy density parameter = HuMs/2 is a linear function of xN, with a rate of increase of 950 erg/cm3 per at. % nitrogen. The estimated uniaxial anisotropy energy per nitrogen atom is 30 J/mol, a value consistent with other systems. For xN below 6 at. %, the scaling of coercive force Hc data with the sixth power of the grain size D indicate a grain averaged effective cubic anisotropy energy density parameter that is about an order of magnitude smaller that the nominal K1 values for iron, and give a quantitative vs. D response that matches predictions for exchange coupled random grains with cubic anisotropy.Comment: 13 pages, 7 figure

    Local Hall effect in hybrid ferromagnetic/semiconductor devices

    Full text link
    We have investigated the magnetoresistance of ferromagnet-semiconductor devices in an InAs two-dimensional electron gas system in which the magnetic field has a sinusoidal profile. The magnetoresistance of our device is large. The longitudinal resistance has an additional contribution which is odd in applied magnetic field. It becomes even negative at low temperature where the transport is ballistic. Based on the numerical analysis, we confirmed that our data can be explained in terms of the local Hall effect due to the profile of negative and positive field regions. This device may be useful for future spintronic applications.Comment: 4 pages with 4 fugures. Accepted for publication in Applied Physics Letter

    Fouling and performance of outer selective hollow fiber membrane in osmotic membrane bioreactor: Cross flow and air scouring effects

    Full text link
    © 2019 Elsevier Ltd This study assessed impacts of cross-flow velocity (CFV) and air scouring on the performance and membrane fouling mitigation of a side-stream module containing outer-selective hollow fiber thin film composite forward osmosis membrane in osmosis membrane bioreactor (OMBR) system for urban wastewater treatment. CFV of draw solution was optimized, followed by the impact assessment of three CFVs on feed solution (FS) stream and periodic injection of air scouring into the side-stream module. Overall, the OMBR system exhibited high and stable performance with initial water flux of approximately 15 LMH, high removal efficiencies of bulk organic matter and nutrients. While FS's CFVs insignificantly affected the performance and membrane fouling, regular air scouring showed substantial impact with better performance and high efficiency in mitigating membrane fouling. These results indicated that periodic air scouring can be applied into the side-stream membrane module for efficient fouling mitigation without interruption the operation of the OMBR system

    Energy exchange during stimulated Raman scattering of a relativistic laser in a plasma

    Get PDF
    Energy exchange between pump and daughter waves during the stimulated Raman scattering process in a plasma is investigated, including the effect of a damping coefficient of electron-ion collision at different initial three-wave phases. To obey the energy and momentum conservations, the resonance conditions are satisfied at an optimal initial phase difference between the interacting waves. The amplitudes of the interacting waves exhibit behaviors such as a parametric oscillator. The variations in initial three-wave phase difference generate a phase mismatch, which enhances the rate of the amplitude variations of the interacting waves. The relativistic mass effect modifies the dispersion relations of the interacting waves, and consequently the energy exchange during the stimulated Raman scattering is affected. The collisional damping in the plasma is shown to have an important effect on the evolution of the interacting waves.open91

    Electron kinetic effects on raman backscatter in plasmas

    Get PDF
    We augment the usual three-wave cold-fluid equations governing Raman backscatter (RBS) with a new kinetic thermal correction, proportional to an average of particle kinetic energy weighted by the ponderomotive phase. From closed-form analysis within a homogeneous kinetic three-wave model and ponderomotively averaged kinetic simulations in a more realistic pulsed case, the magnitude of these new contributions is shown to be a measure of the dynamical detuning between the pump laser, seed laser, and Langmuir wave. Saturation of RBS is analyzed, and the role of trapped particles illuminated. Simple estimates show that a small fraction of trapped particles (similar to 6%) can significantly suppress backscatter. We discuss the best operating regime of the Raman plasma amplifier to reduce these deleterious kinetic effects.open282

    Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes

    No full text
    To fully understand human biology and link genotype to phenotype, the phase of DNA variants must be known. Here we present a comprehensive analysis of haplotype-resolved genomes to assess the nature and variation of haplotypes and their pairs, diplotypes, in European population samples. We use a set of 14 haplotype-resolved genomes generated by fosmid clone-based sequencing, complemented and expanded by up to 372 statistically resolved genomes from the 1000 Genomes Project. We find immense diversity of both haploid and diploid gene forms, up to 4.1 and 3.9 million corresponding to 249 and 235 per gene on average. Less than 15% of autosomal genes have a predominant form. We describe a ‘common diplotypic proteome’, a set of 4,269 genes encoding two different proteins in over 30% of genomes. We show moreover an abundance of cis configurations of mutations in the 386 genomes with an average cis/trans ratio of 60:40, and distinguishable classes of cis- versus trans-abundant genes. This work identifies key features characterizing the diplotypic nature of human genomes and provides a conceptual and analytical framework, rich resources and novel hypotheses on the functional importance of diploidy

    Flying mirror model for interaction of a super-intense nonadiabatic laser pulse with a thin plasma layer: Dynamics of electrons in a linearly polarized external field

    Get PDF
    Interaction of a high-power laser pulse having a sharp front with a thin plasma layer is considered. General one-dimensional numerical-analytical model is elaborated, in which the plasma layer is represented as a large collection of electron sheets, and a radiation reaction force is derived analytically. Using this model, trajectories of the electrons of the plasma layer are calculated numerically and compared with the electron trajectories obtained in particle-in-cell simulations, and a good agreement is found. Two simplified analytical models are considered, in which only one electron sheet is used, and it moves transversely and longitudinally in the fields of an ion sheet and a laser pulse (longitudinal displacements along the laser beam axis can be considerably larger than the laser wavelength). In the model I, a radiation reaction is included self-consistently, while in the model II a radiation reaction force is omitted. For the two models, analytical solutions for the dynamical parameters of the electron sheet in a linearly polarized laser pulse are derived and compared with the numerical solutions for the central electron sheet (positioned initially in the center) of the real plasma layer, which are calculated from the general numerical-analytical model. This comparison shows that the model II gives better description for the trajectory of the central electron sheet of the real plasma layer, while the model I gives more adequate description for a transverse momentum. Both models show that if the intensity of the laser pulse is high enough, even in the field with a constant amplitude, the electrons undergo not only the transverse oscillations with the period of the laser field, but also large (in comparison with the laser wavelength) longitudinal oscillations with the period, defined by the system parameters and initial conditions of particular oscillation.open282
    corecore