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Interaction of a high-power laser pulse having a sharp front with a thin plasma layer is considered.
General one-dimensional numerical-analytical model is elaborated, in which the plasma layer is
represented as a large collection of electron sheets, and a radiation reaction force is derived
analytically. Using this model, trajectories of the electrons of the plasma layer are calculated
numerically and compared with the electron trajectories obtained in particle-in-cell simulations, and
a good agreement is found. Two simplified analytical models are considered, in which only one
electron sheet is used, and it moves transversely and longitudinally in the fields of an ion sheet and
a laser pulse �longitudinal displacements along the laser beam axis can be considerably larger than
the laser wavelength�. In the model I, a radiation reaction is included self-consistently, while in the
model II a radiation reaction force is omitted. For the two models, analytical solutions for the
dynamical parameters of the electron sheet in a linearly polarized laser pulse are derived and
compared with the numerical solutions for the central electron sheet �positioned initially in the
center� of the real plasma layer, which are calculated from the general numerical-analytical model.
This comparison shows that the model II gives better description for the trajectory of the central
electron sheet of the real plasma layer, while the model I gives more adequate description for a
transverse momentum. Both models show that if the intensity of the laser pulse is high enough, even
in the field with a constant amplitude, the electrons undergo not only the transverse oscillations with
the period of the laser field, but also large �in comparison with the laser wavelength� longitudinal
oscillations with the period, defined by the system parameters and initial conditions of particular
oscillation. © 2007 American Institute of Physics. �DOI: 10.1063/1.2799164�

I. INTRODUCTION

Interaction of super-intense laser pulses with thin foils
has been widely investigated during the past decade
experimentally,1–4 analytically,5–9 and by computer
simulations.10–14 Many interesting physical phenomena have
been predicted and observed experimentally in laser-foil in-
teractions. Among them are generation of a high-frequency
radiation13,15 and high harmonics of an incident field,5,9 pro-
duction of relativistic electrons1,2,16 and ions,14,16,17 genera-
tion of relativistic electron mirrors,15,18–20 shaping of laser
pulses5,21,22 and generation of ultrashort electromagnetic
pulses,23,24 and others. Nevertheless, there is no complete
analytical description of all physical processes presented in

the interaction of a super-intense laser pulse with a thin
plasma layer, so an analytical model for this problem, even
phenomenological, is required.

The main instrument for theoretical investigations of the
interaction of a super-intense laser pulse with a plasma layer
is the particle-in-cell �PIC� simulations. However, this
method is inherently numerical and gives only numerical re-
sults, so, for developing the analytical model, different ap-
proaches are necessary. The fluid model allows the analytical
description, but it gives consistent results only for laser
pulses with not very high intensity, when the longitudinal
displacements of the electrons are small and crossings of
electron trajectories do not play an important role.8,9 When
the laser pulse amplitude is large, a numerical-analytical
model19 can be used and it gives adequate results for the
quasi-one-dimensional interactions, i.e., for a large enough
diameter of the laser beam and small thickness of the plasma
layer. This model describes a medium with a large number of
electron sheets,25 and it accounts for the radiation reaction
analytically, so the problem can be reduced to the solution of
only the equations of motion for the electrons with additional
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delayed terms related to the self-action of the plasma-layer
radiation field.

In this paper, the general one-dimensional �1D�
numerical-analytical model is presented for the interaction of
a super-intense laser pulse with a thin plasma layer. Expres-
sions for the radiation reaction force for an ideal infinitely
thin electron sheet and for a real plasma layer with finite
thickness are elaborated, showing strongly nonlinear charac-
ter of the longitudinal component of the radiation reaction
force. Electron trajectories, calculated in this model, are
compared with those in the 1D XOOPIC simulations26 and a
good agreement is ascertained.

As a step toward the development of the complete ana-
lytical model for the problem, two simplified analytical mod-
els are considered. In both models, there is only one electron
sheet, and it moves in the fields of an ion sheet and an ultra-
intense laser pulse. Longitudinal displacements of the elec-
trons along the laser beam axis can be considerably greater
than the laser wavelength � in the considered models. This
assumption constitutes the main difference of our approach
from existing models.5,8,9,21,22 In model I, called the flying
mirror model below �the term “flying mirror” was first used
in Ref. 27�, the electron sheet radiates an electromagnetic
wave when in motion, and this wave modifies the dynamics
of the electron sheet so the radiation reaction is included
self-consistently here. This model is very important from a
physical point of view since it provides the natural mecha-
nism for forgetting the initial conditions �damping� just for
only one electron sheet in the system. In the second model II,
called the Coulomb model, the radiation of the electron sheet
and, hence, the radiation reaction force are omitted. In both
models, the analytical solutions are found for the dynamical
parameters of the electron sheet in a linearly polarized laser
pulse. To elucidate the role of the radiation reaction force in
laser interaction with a plasma layer, these analytical solu-
tions are compared for the two models. Also, the analytical
solutions for models I and II are compared with the numeri-
cal solutions for the central electron sheet �positioned ini-
tially in the center� of the real plasma layer, which are cal-
culated from the general numerical-analytical model.
Analysis shows that, if crossings of the electron trajectories
are unimportant, the trajectory of the central electron sheet
can be represented as some combination of the trajectories
from models I and II. In general, the Coulomb model gives a
better description for the trajectory of the central electron
sheet of the real plasma layer, while the flying mirror model
gives a better description for the transverse momentum.

Both models show that, even in the external field with a
constant amplitude, the electrons undergo large �in compari-
son with the laser wavelength� longitudinal oscillations with
the period, defined by the system parameters and initial con-
ditions of particular oscillation, and also the transverse oscil-
lations with the period of an external field �seen by the elec-
trons�. Strong dependence of the trajectory on initial
conditions for each longitudinal oscillation gives dynamic
stochastization of trajectories just after several longitudinal
oscillations even in the considered models, which contain
only one electron sheet. This behavior is confirmed for the
real thin plasma layer by calculations with the general

numerical-analytical model and with the XOOPIC simulations.
Dynamics of the electron sheet with omitting the longitudi-
nal part of the radiation reaction force was considered ana-
lytically earlier28 for some cases of electric and magnetic
fields.

Below, we will consider the ultra-relativistic laser fields,
when the dimensionless amplitude is considerably larger
than unity, a0= �e �E0 / �mc���1, where e and m are the
charge and the mass of an electron, c is the speed of light in
vacuum, and E0 and � are the amplitude and the frequency
of an external field.

The paper is organized as follows: In Sec. II, the general
numerical-analytical model together with two simplified one-
sheet analytical models are considered. In Sec. III, the ana-
lytical solutions for the case of large laser pulse amplitudes
are found, approximate for model I and exact for model II. In
Sec. IV, the evolution of the system in the field of a
moderate-intensity electromagnetic wave is considered, and
in Sec. V, discussion of the results and conclusions are pre-
sented. Details for the derivation of the analytical expres-
sions for the parameters of the electron sheet are presented in
the Appendix.

II. MODEL AND MAIN EQUATIONS

A. General model

Let us start with a mathematical model for a motion of
an ideal electron sheet, having an infinitely small thickness
and a constant surface density of electrons, in an external
electromagnetic field. The sheet is supposed to have infinite
dimensions in the x and y directions. If the movement of the
sheet is without rotations and deformations, then all variables
depend only on the coordinate z and time t, and the 1D3V
model25 can be used for the system: the motion of the sheet
can be described by three components of velocity �=v /c
and one coordinate Z.

Charge and current densities for the electron sheet are
��z , t�=���z−Z�t�� and j�z , t�=�v�t���z−Z�t��, where � is
the surface charge density. Then, formal solutions to Max-
well’s equations for the radiation fields of the electron sheet
at coordinate z and time t can be obtained with the help of
Green function and have the form19,29

Ez�z,t� = 2�� sign�z − Z�t��� ,

E�e�z,t� = − 2��
���t��

1 − 	z�t��sign�z − Z�t���
, �1�

He�z,t� =
2�� sign�z − Z�t�������t�� 
 ez�

1 − 	z�t��sign�z − Z�t���
,

where E�e=Exeex+Eyeey, v�=vxex+vyey, and t� is the re-
tarded time

c�t − t�� = �z − Z�t��� . �2�

The expressions �1� are one-dimensional �or, more pre-
cisely, 3+1-dimensional� analogs of the classical Lienard-
Wiechert solutions30 and describe the field of an infinite
charged �electron� sheet, in which case the field components
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Eze and E�e can be interpreted as the near field and the
radiation field of the sheet, respectively. From Eqs. �1�, one
can calculate the self-acting fields for the electron sheet as

E�es�Z,t� = − 2��
���t�

1 − 	z
2�t�

,

�3�

Hes�Z,t� = 2��	z
���t� 
 ez

1 − 	z
2�t�

.

This is the field of a standing wave just at the position of
the electron sheet, therefore the amplitude of E does not
equal the amplitude of H. Note that the self-acting field has
no longitudinal component. The fields �3� can be represented
as the components of an electromagnetic field tensor Fsrad

ik for
the self-acting radiation of the sheet. Therefore,

Fsrad
ik =

2��

1 − 	z
2�

0 	x 	y 0

− 	x 0 0 − 	x	z

− 	y 0 0 − 	y	z

0 	x	z 	y	z 0
� . �4�

It is easy to check by direct calculations that this is ac-
tually a four-tensor, because its components transform from
one reference system to another in the same way as the com-
ponents of a four-tensor must do. The equations of motion
for the electrons in the sheet can be obtained in the usual way
from the electromagnetic field tensor.30 For the four-velocity
ui, one has

mc
dui

ds
=

e

c
�Fext

ik + Fsrad
ik �uk =

e

c
Fext

ik uk + gi, �5�

where Fext
ik is the four-tensor of an external electromagnetic

field and gi= �e /c�Fsrad
ik uk is the four-force of the self-action

due to the radiation of the sheet. This force is analogous to
the Dirac force acting on the moving electron. For an ideal
electron sheet, Eq. �5� gives29,31

Fs� = − 2��e��,

�6�
Fsz = − 2��e	�

2 	z/�1 − 	z
2� .

So the radiation reaction force has both transverse Fs� and
longitudinal Fsz components, the latter component being es-
sentially nonlinear. The longitudinal component does not
change directly the longitudinal velocity of the sheet29 �cf.
also Eqs. �3��. This force is only responsible for the change
of the longitudinal momentum, according to the change of
the mass of the sheet due to the radiation damping of the
transverse motion.

For the case of a real plasma layer with finite thickness,
the interaction of the electrons with the self-consistent radia-
tion field of the layer gives rise to the effective �viscous�
force Fs=eEs+e�
Hs, which acts on each electron in the
layer.29,31 The equations of motion for the electrons have
now the following form:

dp

dt
= eE + e� 
 H + Fs, �7�

where p is the relativistic momentum of the electrons, and E
and H are the external fields �these fields are assumed to be
consistent with the model of a medium, which should remain
homogeneous in the x and y directions throughout the evo-
lution of the system�.

If an initial charge density for the electrons is arbitrarily
distributed along the z axis in a region � and homogeneous
in the x and the y directions, then one can divide � into
“elementary” electron sheets of width dz0 by the planes per-
pendicular to the z axis and describe the state of each sheet
by Lagrangian variables. Specifically, let Z�z0 , t� be the lon-
gitudinal coordinate of the sheet with the initial coordinate
z0�� and let 	z�z0 , t�=�Z�z0 , t� /c�t and ��=���z0 , t� be
the dimensionless longitudinal and transverse velocities of
the sheet. In other words, all electron sheets are numbered by
their initial coordinates z0. For the elementary field of each
electron sheet, the expressions in Eqs. �1� are valid; then the
total field of the medium is equal to the sum of the fields of
the elementary sheets,

Ezs�z,t� = 2�e�
�

n�z0� · sign�z − Z�z0,t��dz0,

E�s�z,t� = − 2�e�
�

n�z0� · ���z0,t��z,z0,t��
1 − sign�z − Z�z0,t�� · 	z�z0,t��z,z0,t��


dz0, �8�

Hs�z,t� = 2�e�
�

n�z0� · sign�z − Z�z0,t��
1 − sign�z − Z�z0,t�� · 	z�z0,t��z,z0,t��


���z0,t��z,z0,t�� 
 ezdz0,

where the retarded time t��z ,z0 , t� is different for different
electron sheets and can be determined by Eq. �2�.

In many situations, the trajectories of the electron sheets
do not cross at least at the initial stage of interaction with a
laser pulse �or the number of crossings is insignificant�.
Then, Eqs. �8� can be greatly simplified. In this case, for the
radiation reaction force, acting on the electron sheet with the
initial coordinate z0 from other electron sheets, one has sup-
posing a uniform initial electron density n�z0�=n0 inside the
electron layer of thickness l �z0� �0, l��

Fs��z0,t� = − 2�n0e2	�1 − 	z�z0,t��I1 + �1 + 	z�z0,t��I2
 ,

�9�
Fsz�z0,t� = 2�n0e2���z0,t� · �I2 − I1� ,

and

I1�z0,t� = �
z0��z0

���z0�,t��z0,z0�,t��dz0�

1 − 	z�z0�,t��z0,z0�,t��
,

�10�

I2�z0,t� = �
z0�
z0

���z0�,t��z0,z0�,t��dz0�

1 + 	z�z0�,t��z0,z0�,t��
.
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The algorithm for calculation of dynamics for the elec-
tron sheets, based on Eqs. �8� together with Eqs. �6�, was
realized in the MATLAB code EXACT.19 Some of the trajecto-
ries of the electron sheets, which are evenly distributed in the
plasma layer initially, are presented in Fig. 1�a�. For these
calculations, a laser pulse with a step-like envelope and di-
mensionless amplitude a0=10 was used. The thickness of the
plasma layer �10 nm� was considerably smaller than the laser
wavelength �1 ��. For such a condition, the dynamics for the
electrons of the plasma layer is defined by the product n0l
rather than by n0 and l separately. It is convenient to intro-
duce a dimensionless parameter

� =
2�n0le2

mc�
= �

�p
2

�2

l

�
. �11�

The parameter � is the absolute value of the dimensionless
Coulomb field of ions acting on the electrons, and �p

=�4�n0e2 /m is the characteristic plasma frequency. In Fig.
1, �=2, which corresponds to n0�7
1022 cm−3.

In Fig. 1�b�, the trajectories of test electrons are pre-
sented obtained from simulations with the same parameters
as in Fig. 1�a�, but using the 1D XOOPIC code26 �modified to
monitor trajectories of some test particles�. One can conclude
that two methods give very similar results for the trajectories
of the electrons. Main features for these trajectories are the
presence of initial synchronous stage of acceleration of the
electrons �e.g., in Fig. 1, it is until �t�14� and rapid ther-
malization of the electrons with high resulting temperature
after the termination of the synchronous stage. During syn-
chronous stage, all electron sheets of the plasma layer move

with nearly the same velocities without intersections of tra-
jectories, and the radiations of all sheets are added coher-
ently, so the radiation reaction force is maximal on this stage
according to Eqs. �9� and �10�. Then, electrons on the left
side of the bunch are decelerated by the joint Coulomb field
of the ion sheets and of the electron sheets from the right side
of the bunch. Eventually, these left electron sheets turn back,
and the combined radiation reaction force acting on the other
electron sheets decreases. The influence of the combined ra-
diation reaction force on the motion of the turned electrons
also decreases to a great extent, and only the Coulomb forces
take effect for them. This constitutes the cooperative mecha-
nism for decrease of the radiation reaction force in the
bunch. In a general case, it is impossible to describe analyti-
cally the trajectories of the electrons; only numerical calcu-
lations are possible.

B. Model for a single electron sheet in the fields
of an ion sheet and a super-intense laser pulse

To get some insight into the peculiarities of the elec-
trons’ dynamics, we will consider below the motion of only
one electron sheet around the ion sheet �which is supposed
motionless� in the field of a super-intense laser pulse. The
main emphasis will be made on the role of the radiation-
reaction force in this problem, i.e., we will compare two
cases—one with the radiation-reaction force and the Cou-
lomb force from the ion sheet �the model I�, and the other
with the Coulomb force only �the model II�. The importance
of these models can be substantiated by the following argu-
ments. Let us consider the central electron sheet with initial
coordinate z0= l /2 in a thin plasma layer. The central electron
sheet can be interesting because, when trajectories do not
cross, it corresponds just to the center of distribution �me-
dian� of the plasma layer electrons. If a0��, then for the
synchronous stage of evolution �i.e., when the electron sheets
have nearly equal velocities, their trajectories do not cross,
and the time delay in calculation for total radiation can be
ignored�, the radiation reaction force acting on the central
electron sheet has from Eqs. �9� and �10� components that
are exactly equal to the forces, acting on an ideal electron
sheet according to Eqs. �6�, if one defines the surface elec-
tron density � of this ideal electron sheet through the volume
density of electrons, n0, and the thickness l of the real plasma
layer, �=n0le. So in this case, model I is applicable. On the
other hand, when the radiation reaction force considerably
decreases after the termination of the synchronous stage, the
Coulomb forces, acting on the central electron sheet from
other electron sheets, approximately counterbalance, and the
central electron sheet “feels” only the Coulomb forces from
the ion sheets �again, this will be true, when it is possible to
neglect the crossings of the trajectory of the central electron
sheet with the trajectories of the other electron sheets, i.e.,
during the first longitudinal oscillation�, so model II works at
this stage. Thus, the trajectory of the central electron sheet in
the super-intense laser field can be considered as some com-
bination of the trajectories for the electron sheets from mod-
els I and II �at least during the first longitudinal oscillation�.

The radiation of the electron sheet in the flying mirror

FIG. 1. �Color online� Trajectories of some electrons calculated with the
MATLAB code EXACT �a�, and through simulations with the 1D XOOPIC code
�b�. Laser pulse has a step-like envelope with an amplitude a0=10 and
parameter �=2.
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model is considered in a forthcoming paper.32 It is necessary
to note that the model with a single electron sheet has been
intensively developed for a case of a relatively small �but
relativistic� amplitude of the laser pulse, 1�a0�� �the
so-called sliding mirror model�, giving substantial
results.5,21,22,24

To proceed with the dynamics for the single electron
sheet, let an arbitrarily polarized plane electromagnetic wave
E��t−kz�=E0e0���t−kz� be incident on this sheet along the
z axis �k is the wave vector of the wave and the function e0�

describes the wave envelope�. In this case, the dynamics of
the sheet can be described by the following equations �cf.
Eqs. �6� and �7��:

dpx

dt
= eEx
1 −

pz

mc�
� −

2��e

mc�
px,

dpy

dt
= eEy
1 −

pz

mc�
� −

2��e

mc�
py ,

dpz

dt
=

e�pxEx + pyEy�
mc�

−
2��e

mc�

�px
2 + py

2�pz

m2c2 + px
2 + py

2

− 2��e sign Z , �12�

d�

dt
=

e�pxEx + pyEy�
m2c2�

−
2��e

mc

px
2 + py

2

m2c2 + px
2 + py

2

−
2��e

m2c2�
pz sign Z ,

dZ

dt
=

pz

m�
,

where �= �1−v2 /c2�−1/2. Introducing the variable �=�
− pz / �mc�, one has for pz and �:

� =
1 + px

2 + py
2 + �2

2�
, pz =

1 + px
2 + py

2 − �2

2�
. �13�

Here and below, the dimensionless form is used for the mo-
mentum p̃x,y,z= px,y,z / �mc�, and also for the time �=�t and

coordinate Z̃=kZ instead of the dimensional time t and coor-

dinate Z �for the momenta p̃ and the coordinate Z̃, we use the
same symbols p and Z as before�. Besides, a variable �=�
−Z��� will be used as an independent variable instead of �.
The transformation is made according to the relation d /d�
= ���− pz� /��d /d�= �� /��d /d� that results in

dpx

d�
= − a0e0x −

s�

�
px,

dpy

d�
= − a0e0y −

s�

�
py ,

�14�
d�

d�
= �
sign Z − s +

s

1 + px
2 + py

2�,
dZ

d�
=

pz

�
.

where the parameter s is equal to 1, if the self-action radia-
tion reaction is present �model I�, and zero otherwise �model
II�, and parameter � is defined by Eq. �11�. One can see that
� characterizes also the self-radiation reaction force for the
electron sheet. The variable Z can be considered just as a

switch between two different dynamical solutions to the sys-
tem �14�.

Let us suppose for simplicity that the external wave is
linearly polarized and has only x component. For small field
amplitudes, one can expect that pz�0 and

� = �1 + px
2. �15�

However, from the system �14�, it is apparent that there are
no solutions with pz�0 for the sheet. So in this case, Eq.
�15� for � should be considered as a kind of an averaged
relation. The real value for � executes fast oscillations with a
small amplitude near the curve defined by Eq. �15�. The pe-
riod of such oscillations is considerably smaller than the la-
ser period. The evolutions of pz and Z resemble some kind of
sawtooth curves around zero. Physically, this means that the
Coulomb forces of the ion remainder are considerably larger
than the light pressure force and they can prevent the elec-
trons from the longitudinal displacements.

On the other hand, for large field amplitudes, the light
pressure force overcomes the Coulomb force of the ion sheet,
and the electrons start to swing longitudinally with large am-
plitude opposite to the semi-infinite plasma case. For a real
plasma layer, such a behavior will be observable, when the
amplitude of the longitudinal oscillations will be consider-
ably larger than the thickness of the plasma layer l, i.e., for
a0�� and small l. Also, these oscillations can cause insta-
bilities, e.g., those observed in 1D simulations of Refs. 8 and
9. So the models,5,8,9,21,22 which suppose that pz is vanish-
ingly small, can give inconsistent results in the case of large
laser pulse amplitudes.

Numerical solutions of Eqs. �14� in the regime of large
laser pulse amplitudes, obtained for the step-like laser pulse
envelope with a0=10 and �=2, are presented in Fig. 2,
where trajectories for models I �s=1� and II �s=0� are shown
together with the trajectory of the central electron sheet of
the real plasma layer calculated with the code EXACT. Similar
electron dynamics can be derived from the PIC simulation in
Fig. 1�b� �see also simulations in Refs. 11 and 12�.

So when an external electromagnetic wave falls on the
system and excites oscillations of the electron sheet, there are
two characteristic periods for the motion of the electron
sheet—the period of longitudinal oscillations, which is de-
fined either only by the Coulomb field of the ion sheet
�model II�, or by the radiation reaction force and the Cou-
lomb force �model I�, and the period of transverse oscilla-
tions, which is equal to the period of the external field �seen
by the electron sheet�. The dynamics of the electron sheet is
determined by the relation between the periods for longitu-
dinal and transverse oscillations and can be very complicated
when they are close but not equal.

Equation �14� for the momentum px has zero “viscosity”
in model II, while, in model I, the viscosity is variable. Ac-
tually, for the flying mirror model I, the parameter ���0

=1 for the small times �, then, the viscosity in the px equa-
tion is defined by the parameter � and for large � values can
be large. When � grows up, the viscosity coefficient � /�
tends to zero, and the self-radiation reaction force becomes
inessential, so the electron sheet effectively “enters” the
Coulomb model II. The boundary between two regimes is
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��5� �cf. Eqs. �14��. Therefore, in model I, the self-
radiation reaction force influences on the dynamics of the
electron sheet only at the beginning of the longitudinal os-
cillation; during return part its action is negligible, so the
shapes of the trajectories for models I and II coincide here
�cf. parts of the trajectories from ��80 to ��110 for model
I and from ��20 to ��50 for model II in Fig. 2�. This
constitutes an individual mechanism for the decrease of the
radiation reaction force in addition to the cooperative mecha-
nism considered in Sec. II B. From the physical point of
view, the viscosity provides for “forgetting” the initial con-
ditions of the electron sheet.

III. SOLUTIONS FOR LARGE-FIELD AMPLITUDES

A. Motion in the presence of the radiation reaction
force „model I…

1. Approximate solutions for the case Z>0

Let us now consider the evolution of the system in more
details. When the radiation reaction force is taken into ac-

count �model I, s=1�, the equations of motion �14� become
strongly nonlinear, so exact solutions can hardly be written.
However, for large external field amplitude a0��, the mo-
mentum px can be considered as an oscillating function with
slowly changing amplitude and phase �cf. Sec. II B and Fig.
2�. So to find approximate solutions, we shall use the slowly
varying envelope approximation, i.e., we suppose that the
external field has the form

a0���e0x��� = a0���sin�� + �0� , �16�

with the amplitude a0��� of the external field being a slowly
varying envelope in comparison with sin��+�0�, and �0

=const being an initial phase of the external field. Then, one
has for zero initial conditions of px �cf. the Appendix�

px = p0�cos�� + �0 + �� − exp�− ��/��cos��0 + ��� , �17�

where

p0 =
a0�

��2 + �2
, tan � =

�

�
, �18�

and

� =�
��0
2 + �2 + ��

0

� d�

�a0
2 + 1

�2

− �2. �19�

Since the value for � in Eq. �19� is growing up from the
value of �0, not only does the amplitude of the oscillations
for px change during evolution of the system, but the phase
of oscillations changes as well.

It is interesting to note that Eqs. �17�–�19� show some
delay in solutions clearly visible, e.g., for the laser pulse with
a step-like envelope. This delay is similar to a delay of re-
sponse for a linear oscillator with dissipation. It is the radia-
tion reaction force that provides for such a delay, more ex-
actly, the strongly nonlinear longitudinal component of this
force. So this effect is especially important for the large-field
amplitudes.

The coordinate Z can be split into two parts—slow Zs

and fast Zf, and for the step-like amplitude a0 of the laser
field, these parts are defined according to the equations �cf.
the Appendix�

Zs =
�

2� a0
2

2
�0
2 + �2 +

����0
2 + �2

�a0
2 + 1

� − 1� , �20�

Zf =
a0

2�sin 2�� + �0 + �� − sin 2��0 + ���
8��2 + �2�

. �21�

Expression �20� analytically confirms the numerical results
of Figs. 1 and 2 showing again that, for large a0, the longi-
tudinal displacement can be considerably larger than the la-
ser wavelength. Therefore, denoting this fact, the above re-
gime can be called a “flying” regime. Note also the
asymmetric character of the longitudinal oscillations for Z

0 and Z�0 �cf. also Fig. 2�c�, green dashed line�, which is
the result of the interplay between the Coulomb force of the
ion remainder and the radiation-reaction force. Due to the
nonlinearity of the last, the asymmetry depends on the am-

FIG. 2. �Color online� Transverse momentum px �a�, variable � �b�, and
longitudinal coordinate Z �c� for the electron sheet in the field of an intense
electromagnetic wave with the step-like amplitude a0=10 for �=2 and �0

=0: red solid line corresponds to the central electron sheet in the calcula-
tions with the EXACT code; green dashed line and blue dotted line are cal-
culated using model I with the radiation reaction �s=1� and the model with-
out the radiation reaction �model II, s=0� correspondingly. Note different
horizontal scales in panel �a� and panels �b� and �c�.
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plitude of the external field. Fast component Zf decreases
with time because of the growth of �.

In Fig. 3, the approximate solutions �17�–�20� for the
first longitudinal oscillation are compared with the numerical
solutions to Eqs. �14� in the case of a0=10, �=2, �0=0. As
can be seen from these figures, the solutions for px and �
coincide with good accuracy. The difference in solutions for
the coordinate Z is due to neglecting the pd term in px and �
�cf. the Appendix� in calculations of the integral for Z.

Let us estimate at last the period of longitudinal oscilla-
tions, �l, of the electron sheet in the field of an external
electromagnetic wave �the maximal value Zmax of the Z co-
ordinate of the sheet is on the order of �l /2 if one disregards
the interval where Z goes up�. This can be done by equating
the coordinate Zs+Zf to zero, and, if Zf can be omitted, gives
from expression �20�

�l =
�a0

2 + 1

���0
2 + �2


a0
2

2
− �0

2 − �2� . �22�

The value �l depends strongly on the amplitude of the laser
field a0 and on the Coulomb field �, and also, it essentially

depends on the parameter �0. On the other hand, the value
for �l from Eq. �22� has no dependence on the initial phase of
the laser field �0 since the drift term quickly vanishes in the
presence of the radiation reaction force.

2. Evolution for the case Z<0

In this regime, � decreases rapidly to the value of about
1. At the same time, the damping � /� of the transverse mo-
mentum grows up �cf. Eq. �14��, and the amplitude of the
transverse oscillations decreases. So when the coordinate Z
starts to grow after the downfall, the initial values of the
system parameters are different from those for the first lon-
gitudinal oscillation: �
0, Z=0, 0� px�a0. Besides, the
initial phase of the external field �0 can be different for the
second �and all subsequent� longitudinal oscillation. In this
case, the next �and others� longitudinal oscillation can have
different duration �cf. Eq. �22� and Figs. 1 and 2�. Also dif-
ferent will be the maximal values for � and Z; however, the
shapes of the dependences on time for the system variables
are similar for all longitudinal oscillations. So after several
longitudinal oscillations, the variable �l and the initial values
for px, Z, and � become practically random variables that
give dynamic stochastization of the trajectory. This is even
more expressed for the variable amplitude a0��� of an exter-
nal field, when �l �and initial values� change due to the
change of a0��� also. The stochastic motion of a single elec-
tron in the field of a super-intense electromagnetic wave was
considered earlier.33,34

B. Motion in the fields of a laser pulse
and an ion sheet „radiation reaction force omitted,
model II…

For Z
0, one has �px�0�=0�:

px��� = − �
0

�

a0����ex����d��,

���� = �0 + �� , �23�

Z��� = �
0

�

�1 + px
2�����d��/�2�2����� − �/2.

For Z�0, solutions will be similar, except for �, which
is now a decreasing function of �: ����=�0−��, and prob-
ably different initial conditions for px and � will be required.
Note that the rate of the growth and the decrease for param-
eter � are just equal in this case; this ensures symmetry of
the electron sheet’s trajectory for Z
0 and Z�0 �cf. Figs. 1
and 2�.

To make a comparison with model I, it is convenient to
use here for px the slowly varying envelope approximation in
spite of the availability of the exact solutions �23�. Then, one
has if a0 changes slowly

px = a0�cos�� + �0� − cos �0� . �24�

Important differences here from model I are an absence
of the phase modulation for px and a constant value for the
drift term, which does not decrease with time. Also, the am-

FIG. 3. �Color online� Transverse momentum px �a�, variable � �b�, and
longitudinal coordinate Z �c� for the electron sheet in the field of an intense
electromagnetic wave with the step-like amplitude a0=10 for �=2 and �0

=0 �flying regime, model I�. Solid lines �blue� are the numerically calculated
results, dotted lines �red� are the approximate solutions according to the
expressions �17�–�20�.
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plitude for px depends on the amplitude of the external field
a0 only and does not depend on the parameters � and �.

Based on Eqs. �24�, the coordinate Z can be split again
into two parts—fast Zf and slow Zs. For ��1, Zf cannot be
neglected, and integral cosine and sine functions can be uti-
lized to calculate Zf. If ��1, Zf gives only small oscilla-
tions, and the total coordinate can be approximated by the
slow part Zs. In this case, one has for the step-like amplitude
of the laser pulse

Zs =
�

2

1 + a0

2�1/2 + cos2 �0�
�0��0 + ���

− 1� ,

�25�

Zf =
a0

2�sin 2�� + �0� − 8 cos �0 sin�� + �0� + 3 sin 2�0�
8��0 + ���2 .

The period of longitudinal oscillations, �l, now has the form

�l =
1 − �0

2 + a0
2�1/2 + cos2 �0�
��0

, �26�

so �l depends not only on the initial value for � but on the
initial phase �0 of the laser field also. The maximal value for
�l will be achieved for �0=0. It is easy to check that even
this maximal value for �l is smaller than the value for �l from
Eqs. �22� for model I �with the radiation reaction�, so the
radiation reaction force provides additional longitudinal ac-
celeration for the electron sheet. The physical mechanism for
such a phenomenon was considered in Refs. 19 and 29.

IV. EVOLUTION OF THE SYSTEM
IN THE FIELD OF A MODERATE-INTENSITY
ELECTROMAGNETIC WAVE

To define the meaning of the definition “moderate,” let
us analyze expression �22� for the period of the longitudinal
oscillations for the electron sheet. It can be seen that when

a0 � �2��0
2 + �2� , �27�

�l and Zmax become considerably smaller than the period of
the external field and the laser wavelength correspondingly.
Then, the electron sheet can be considered as practically mo-
tionless in the z direction for a0���2 �supposed ���0�,
and only the equation for px from the system �14� should be
solved, with the parameter � approximately determined ac-
cording to Eq. �15� �cf. Sec. II B�. So the regime of small or
large amplitudes of the external wave can be defined by the
fulfillment of the inequality �27� or the opposite one.

For the Coulomb model II, the momentum px does not
depend on � so, for small laser pulse amplitudes, the solution
for px is given just by Eqs. �23�, and the solution for � is
given by Eq. �15�. So below, we shall consider the solutions
for the flying mirror model I, which accounts for the radia-
tion reaction.

If px is small �a0���, then �=�1+ px
2�1, and the mo-

mentum px undergoes the evolution with the full viscosity
equal to �. So this regime can be called a “viscous,” or
“damped,” regime, contrary to the flying regime considered
in Sec. III A, in which the viscosity in the equation for px

tends to zero when � grows.

Let the solution for px be written again as in Eq. �A1�.
With the help of the averaging method used above, one can
obtain for ��a0�1 the following equations �zero initial
condition for px is supposed�:

p0
2�1 + �2f�p0�2� = a0

2, tan � = �f�p0� ,

�28�
pd = − p0 exp�− ���cos��0 + �� ,

where the function f�p0� is defined according to the equation

f�p0� =
1

�
�

0

2� cos2 �d�

�1 + p0
2 cos2 �

, �29�

and p0 has to be considered as constant in this integral. Func-
tion f�p0� can be written in the analytic form as a sum of
elliptic integrals depending on an imaginary argument. Also,
for f�p0�, the following inequalities are valid:

1 � f�p0� � �1 + p0
2�−1/2. �30�

The values f�p0��1 are achieved for the small momenta
p0�1 that corresponds to the inequality a0��. For rela-
tively large values of p0, corresponding to the regime a0

��, the reasonable approximation for the function f�p0� can
be f�p0���1+ p0

2�−1/2. This dependence is presented in Fig.
4�a� �curve B�, together with the numerical calculations for
the function f�p0� according to Eq. �29� �curve A�, and a
relatively good agreement can be ascertained. Using the ap-
proximation f�p0���1+ p0

2�−1/2, one can obtain the approxi-
mate analytic expression for p0,

p0
2 = ���a0

2 − �2 − 1�2 + 4a0
2 + a0

2 − �2 − 1�/2. �31�

Comparison of two approximations for the amplitude p0,
obtained from the numerical solution of the first equation of
Eqs. �28� and from Eq. �31�, is presented in Fig. 4�b� ��
=10�. Two curves are close enough for the case a0��, how-
ever, for ��a0���2, the approximation �31� gives only
qualitative results for a linearly polarized external field.

FIG. 4. Comparison of two approximations for the function f0= f�p0� �a�
�curve A, numerical calculation of the integral �29�; curve B, approximation
according to Eq. �30��, and the amplitude p0 �b� �curve A, numerical solution
from Eqs. �28�; curve B, approximate solution from Eq. �31��.
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The dependences in Fig. 4�b� demonstrate highly nonlin-
ear behavior of the momentum amplitude p0 with respect to
the laser field amplitude a0. This feature can be effectively
used for shaping the laser pulses5,21,22 that will be considered
in detail in a forthcoming paper.32

V. DISCUSSION OF RESULTS AND CONCLUSIONS

From Fig. 2, one can conclude that the parameters of
motion �px, �, and Z� for the central electron sheet of the
plasma layer coincide well with the predictions of model I
�with the radiation reaction� at the initial stage of interaction
�until �t�20 for parameters used in simulation, a0=10, �
=2�. After that, the role of the radiation reaction force de-
creases due to cooperative and individual mechanisms, and
the evolution of the trajectory of the central electron sheet
resembles the evolution of the electron sheet’s trajectory in
the Coulomb model II. Thus, the trajectory has almost trian-
gular form as opposed to the model I with a parabolic shape
of the trajectory �Fig. 2�c��, and the durations of the first
longitudinal oscillation are close �about 39 for the central
electron sheet in the numerical-analytical model and 32 for
the model II as opposed to 110 in the model I�.

However, the Coulomb model II has some shortcoming
for full description of the process. Namely, in this model, the
drift term in the transverse momentum px exists for infinite
time, so the initial conditions cannot be forgotten. Besides,
the maximal absolute value for px is overestimated in this
model: for simulations of Fig. 2, the overestimation is by two
times. But for the case of a0��, the overestimation can be
more considerable, e.g., for a0=5, �=10, the XOOPIC and the
EXACT simulations give �px�max�0.55, the model with the
radiation reaction force �model I� gives �px�max�0.56 �cf.
Fig. 4�, while model II gives �px�max=10. Note that in the
flying mirror model I, there is a natural physical mechanism
for the forgetting the initial conditions: this is the radiation of
the electron sheet, which is self-consistently included in the
model, that is why this model correctly describes the evolu-
tions of the amplitude and the drift term of px �cf. Fig. 2�a��.
So future efforts in the developing the general analytical
model may be successful through an inclusion into the flying
mirror model of a mechanism for a gradual suppression of
the radiation reaction force on later stages of evolution
�equivalent to cooperative mechanism, cf. Sec. II A� in addi-
tion to the inherent decrease due to the growth of � �indi-
vidual mechanism, cf. Sec. II B�.

The step-like laser pulse envelope was considered in the
analytical models above. For the external wave with a time
dependent amplitude �laser pulse with finite duration�, the
longitudinal displacement of the electron sheet is negligible
at once. Then, with growing the field amplitude, the longitu-
dinal displacement increases, and the sheet undergoes several
large longitudinal oscillations with parameters depending on
the pulse duration and the maximal amplitude of the field.
After that, the amplitude of the longitudinal displacements
tends to zero at the back end of the laser pulse. The initial
conditions for the large longitudinal oscillations become
practically random in this case, because, before large longi-
tudinal oscillations, the sheet undergoes a great number of

small oscillations along z �with the amplitude less than the
laser wavelength�. For the laser pulses with moderate maxi-
mal field amplitudes, the situation is still more complicated,
and for �a0�max���2 the motion of the electrons can re-
semble the stochastic behavior.

In conclusion, the analytical model with only one elec-
tron sheet moving in the fields of an ion sheet and a laser
pulse was considered above as the step toward the develop-
ment of the full analytical model for the problem. Inside this
one-sheet model, two cases were considered and compared
with the characteristics of the central electron sheet in the
real plasma layer—the flying mirror model I includes the
radiation reaction force, while this force is omitted in the
Coulomb model II. For both cases, the analytical solutions
for the dynamical parameters of the electrons were found
�approximate for the model I and exact for the model II�. In
general, the Coulomb model II gives better description for
the trajectory Z and the parameter � of the central electron
sheet of the real plasma layer, however the transverse mo-
mentum px is better described by the flying mirror model I.

It is possible to distinguish two regimes in the dynamics
of the electron sheet in a super-intense laser field for large
parameter �: flying regime �a0���2�, which is character-
ized by the large longitudinal oscillations of the electrons
�with amplitude considerably larger than ��, and viscous, or
damping, regime �a0���2� when the longitudinal displace-
ments are smaller than �. In both regimes, the electrons un-
dergo also the transverse oscillations with the period of the
external field. The period of longitudinal oscillations is de-
fined by the system parameters a0 and �, and also it depends
essentially on the initial conditions of each oscillation �which
after some time of evolution become random variables�,
which results in variation of this period from one longitudi-
nal oscillation to another. This feature contrasts with the case
of a semi-infinite plasma, where only a small part of the
electrons has a large amplitude of longitudinal motion.
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APPENDIX: SOLUTIONS IN MODEL I
FOR LARGE-FIELD AMPLITUDES AND Z>0

We suppose that the solution for px can be written in the
following form:

px = pd + p0 cos�� + �0 + �� , �A1�

where pd, p0, and � are the slowly varying functions of vari-
able �. Then, one can obtain using the slowly varying enve-
lope approximation
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dpd

d�
= −

�

�
pd, p0 =

a0�

��2 + �2
, tan � = �/� ,

�A2�
d�

d�
=

�

�1 + p0
2

= �� �2 + �2

�2 + �2�a0
2 + 1�

,

where the part due to pd was omitted in �. Expanding the
square root in the equation for � into Taylor series with keep-
ing only the linear term in �2 /�2�a0

2+1� and omitting the
logarithmic terms in the resulting integral, one can get ex-
pression �19� for �.

To find the drift term pd, let us at first consider � as
being constant. Then, for px�0�=0, one has

pd = − p0 cos��0 + ��exp�− ��/�� . �A3�

From this solution, one can conclude that the function pd

changes much faster with � than the function �. So one can
use the solution �A3� not only for the constant value of �, but
for the changing � as well. Then, the full solution for the
momentum px acquires the form of Eq. �17�.

For the long-term evolution of the longitudinal coordi-
nate of the sheet �evolution for large � values�, one can omit
in px the exponential terms arising from pd. Then, the longi-
tudinal coordinate Z can be split into two parts—slow Zs and
fast Zf, and the following equations are valid:

dZs

d�
=

2 + p0
2

4�2 −
1

2
,

�A4�
dZf

d�
=

p0
2 cos 2�� + �0 + ��

4�2 ,

and during integration of the second equation of �A4�, the
variables p0, �, and � have to be considered as constants.
The equation for Zs cannot be integrated without a selection
of an explicit expression for a���. For the step-like amplitude
a���, one can obtain Zs in the form of Eq. �20�.
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