101 research outputs found
Quality assessment of randomized controlled trial abstracts on drug therapy of periodontal disease from the abstracts published in dental Science Citation Indexed journals in the last ten years
Randomized controlled trials (RCTs) provide the highest level of evidence and are likely to influence clinical decision-making. This study evaluated the reporting quality of RCT abstracts on drug therapy of periodontal disease and assessed the associated factors. The Pubmed database was searched for periodontal RCTs published in Science Citation Indexed (SCI) dental journals from 2010/01/01 to 2019/07/17. Information was extracted from the abstracts according to a modified Consolidated Standards of Reporting Trials (CONSORT) guideline checklist. The data was analyzed using descriptive statistical analysis and the statistical associations were examined using the linear regression analysis (P <0.05). This study retrieved 1715 articles and 249 of them were finally included. The average overall CONSORT score was 15.6 ± 3.4, which represented 40.9% (±0.6) of CONSORT criteria filling. The reporting rate of some items (trial design, numbers analyzed, confidence intervals, intention-to-treat analysis or per-protocol analysis, harms, registration) was less than 30%. The adequate reporting rate of some items (participants, randomization, numbers analyzed, confidence intervals, intention-to-treat analysis or per protocol analysis) was no more than 4%. None of the abstracts reported funding. According to the multivariable linear regression results, number of authors (P=0.030), word count (P <0.001), continent (P=0.003), structured format (P <0.001), type of periodontal disease (P <0.001) and international collaboration (P=0.023) have a significant association with reporting quality. The quality of RCT abstracts on drug therapy of periodontal disease in SCI dental journals remained suboptimal. More efforts should be made to improve RCT abstracts reporting quality
Total flavonoids extracted from Penthorum chinense Pursh mitigates CCl4-induced hepatic fibrosis in rats via inactivation of TLR4-MyD88-mediated NF-κB pathways and regulation of liver metabolism
Background:Penthorum chinense Pursh (PCP) is widely utilized in China to treat a variety of liver diseases. It has been shown that flavonoids inhibit inflammation and have the potential to attenuate tissue damage and fibrosis. However, the mechanisms underlying how total flavonoids isolated from PCP (TFPCP) exert their anti-fibrotic effects remain unclear.Methods: The chemical composition of TFPCP was determined using UHPLC–Q-Orbitrap HRMS. Subsequently, rats were randomly assigned to a control group (Control), a carbon tetrachloride (CCl4)-induced hepatic fibrosis model group (Model), a positive control group [0.2 mg/(kg∙day)] of Colchicine), and three TFPCP treatment groups [50, 100, and 150 mg/(kg∙day)]. All substances were administered by gavage and treatments lasted for 9 weeks. Simultaneously, rats were intraperitoneally injected with 10%–20% CCl4 for 9 weeks to induce liver fibrosis. At the end of the experiment, the liver ultrasound, liver histomorphological, biochemical indicators, and inflammatory cytokine levels were tested respectively. The underlying mechanisms were assessed using Western blot, immunohistochemistry, immunofluorescence, RT-qPCR, and metabolomics.Results: Fourteen flavonoids were identified in TFPCP. Compared with control animals, CCl4-treated rats demonstrated obvious liver injury and fibrosis, manifested as increases in gray values, distal diameter of portal vein (DDPV) and a decrease in blood flow velocity (VPV) in the ultrasound analysis; increased biochemical index values (serum levels of ALT, AST, TBIL, and ALP); marked increases in the contents of fibrotic markers (PC III, COL4, LN, HA) and inflammatory factors (serum TNF-α, IL-6, and IL-1β); and significant pathological changes. However, compared with the Model group, the ultrasound parameters were significantly improved and the serum levels of inflammatory cytokines were reduced in the TFPCP group. In contrast, the expression of TGF-β1, TLR4, and MyD88, as well as the p-P65/P65 and p-IκBα/IκBα ratios, were considerably reduced following TFPCP treatment. In addition, we identified 32 metabolites exhibiting differential abundance in the Model group. Interestingly, TFPCP treatment resulted in the restoration of the levels of 20 of these metabolites.Conclusion: Our findings indicated that TFPCP can ameliorate hepatic fibrosis by improving liver function and morphology via the inactivation of the TLR4/MyD88-mediated NF-κB pathway and the regulation of liver metabolism
Tau-related white-matter alterations along spatially selective pathways
Progressive accumulation of tau neurofibrillary tangles in the brain is a defining pathologic feature of Alzheimer's disease (AD). Tau pathology exhibits a predictable spatiotemporal spreading pattern, but the underlying mechanisms of this spread are poorly understood. Although AD is conventionally considered a disease of the gray matter, it is also associated with pronounced and progressive deterioration of the white matter (WM). A link between abnormal tau and WM degeneration is suggested by findings from both animal and postmortem studies, but few studies demonstrated their interplay in vivo. Recent advances in diffusion magnetic resonance imaging and the availability of tau positron emission tomography (PET) have made it possible to evaluate the association of tau and WM degeneration (tau-WM) in vivo. In this study, we explored the spatial pattern of tau-WM associations across the whole brain to evaluate the hypothesis that tau deposition is associated with WM microstructural alterations not only in isolated tracts, but in continuous structural connections in a stereotypic pattern. Sixty-two participants, including 22 cognitively normal subjects, 22 individuals with subjective cognitive decline, and 18 with mild cognitive impairment were included in the study. WM characteristics were inferred by classic diffusion tensor imaging (DTI) and a complementary diffusion compartment model - neurite orientation dispersion and density imaging (NODDI) that provides a proxy for axonal density. A data-driven iterative searching (DDIS) approach, coupled with whole-brain graph theory analyses, was developed to continuously track tau-WM association patterns. Without applying prior knowledge of the tau spread, we observed a distinct spatial pattern that resembled the typical propagation of tau pathology in AD. Such association pattern was not observed between diffusion and amyloid-β PET signal. Tau-related WM degeneration is characterized by an increase in the mean diffusivity (with a dominant change in the radial direction) and a decrease in the intra-axonal volume fraction. These findings suggest that cortical tau deposition (as measured in tau PET) is associated with a lower axonal packing density and greater diffusion freedom. In conclusion, our in vivo findings using a data-driven method on cross-sectional data underline the important role of WM alterations in the AD pathological cascade with an association pattern similar to the postmortem Braak staging of AD. Future studies will focus on longitudinal analyses to provide in vivo evidence of tau pathology spreads along neuroanatomically connected brain areas
Surgical intervention combined with weight-bearing walking training improves neurological recoveries in 320 patients with clinically complete spinal cord injury: a prospective self-controlled study
Although a large number of trials in the SCI field have been conducted, few proven gains have been realized for patients. In the present study, we determined the efficacy of a novel combination treatment involving surgical intervention and long-term weight-bearing walking training in spinal cord injury (SCI) subjects clinically diagnosed as complete or American Spinal Injury Association Impairment Scale (AIS) Class A (AIS-A). A total of 320 clinically complete SCI subjects (271 male and 49 female), aged 16-60 years, received early (≤ 7 days, n = 201) or delayed (8-30 days, n = 119) surgical interventions to reduce intraspinal or intramedullary pressure. Fifteen days post-surgery, all subjects received a weight-bearing walking training with the "Kunming Locomotion Training Program (KLTP)" for a duration of 6 months. The neurological deficit and recovery were assessed using the AIS scale and a 10-point Kunming Locomotor Scale (KLS). We found that surgical intervention significantly improved AIS scores measured at 15 days post-surgery as compared to the pre-surgery baseline scores. Significant improvement of AIS scores was detected at 3 and 6 months and the KLS further showed significant improvements between all pair-wise comparisons of time points of 15 days, 3 or 6 months indicating continued improvement in walking scores during the 6-month period. In conclusion, combining surgical intervention within 1 month post-injury and weight-bearing locomotor training promoted continued and statistically significant neurological recoveries in subjects with clinically complete SCI, which generally shows little clinical recovery within the first year after injury and most are permanently disabled. This study was approved by the Science and Research Committee of Kunming General Hospital of PLA and Kunming Tongren Hospital, China and registered at ClinicalTrials.gov (Identifier: NCT04034108) on July 26, 2019
Political Control, Corporate Governance and Firm Value: The Case of China
We examine whether requiring a Party committee to lead corporate governance at listed state-owned enterprises (SOEs) affects firm value in China. We find that the market reacts positively to the inclusion of Party leadership in SOEs\u27 governance structure and that the prospect of a crackdown on SOE corruption is likely to be the reason. The China governance model is strikingly different from other known models, and our findings suggest that a convergence of the corporate governance system of different countries due to globalization might not be the only outcome
Synthesis and characterization of ERB-1 zeolite
The ERB-1 zeolite was synthesized using silica aerogel as the silica source, boric acid as the boron source, and sodium hydroxide as the alkali source, respectively. The obtained ERB-1 zeolite was characterized by X-ray diffraction (XRD), N-2 adsorption, NH3 temperature-programmed desorption (NH3-TPD), thermogravimetry analysis (TG), differential thermal analysis (DTA) and Fourier-transform infrared reflectance spectroscopy (FT-IR). It was found that the suitable synthesis gel compositions were n(SiO2)/n(B2O3) = 0.6 similar to 2, n(H2O)/n(SiO2) = 40, n(NaOH)/n(SiO2) = 0.1 similar to 0.2, and n(HMI)/n (SiO2) = 0.8 similar to 1. The FT-IR result indicated that a part of boron atoms had incorporated into the framework of ERB-1 zeolite. The TG, DTA, and XRD results showed that the ERB-1 zeolite maintained its framework below 800 degrees C when it was calcined in air flow. The NH3-TPD result exhibited that the ERB-1 zeolite had poor acidity and the weak acid was in the majority of its acid sites
Chemical proteomic analysis of the potential toxicological mechanisms of microcystin-RR in zebrafish (Danio rerio) liver
Microcystins (MCs) are common toxins produced by freshwater cyanobacteria, and they represent a potential health risk to aquatic organisms and animals, including humans. Specific inhibition of protein phosphatases 1 and 2A is considered the typical mechanism of MCs toxicity, but the exact mechanism has not been fully elucidated. To further our understanding of the toxicological mechanisms induced by MCs, this study is the first to use a chemical proteomic approach to screen proteins that exhibit special interactions with MC-arginine-arginine (MC-RR) from zebrafish (Danio rerio) liver. Seventeen proteins were identified via affinity blocking test. Integration of the results of previous studies and this study revealed that these proteins play a crucial role in various toxic phenomena of liver induced by MCs, such as the disruption of cytoskeleton assembly, oxidative stress, and metabolic disorder. Moreover, in addition to inhibition of protein phosphate activity, the overall toxicity of MCs was simultaneously modulated by the distribution of MCs in cells and their interactions with other target proteins. These results provide new insight into the mechanisms of hepatotoxicity induced by MCs. (c) 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1206-1216, 2016.</p
Hierarchical ZSM-11 zeolite prepared by alkaline treatment with mixed solution of NaOH and CTAB: characterization and application for alkylation of benzene with dimethyl ether
A facile alkaline treatment with the addition of surfactant cetyltrimethylammonium bromide (CTAB) to prepare hierarchical ZSM-11 zeolite (Z-xat-yCTAB) is presented. The textural and structural properties of Z-xat-yCTAB were characterized by XRD and adsorption and desorption of N-2 and benzene. By virtue of CTAB addition, uniform intracrystalline mesopore distribution centered at ca. 4.2 nm was introduced accompanied by well-protected microporosity. Based on characterization results such as TEM images and BJH curves as well as Si-29 and Al-27 MAS NMR spectra, the composite effects of NaOH and CTAB on mesoporosity production were proposed. Acidity was characterized thoroughly by FTIR of adsorbed pyridine (Py-IR) and pivalonitrile. Accordingly, the ratio and accessibility factor of Bronsted and Lewis acid sites are discussed systematically. In the alkylation of benzene with dimethyl ether, Z-xat-yCTAB series samples exhibited better reaction stability than ZSM-11 samples treated with NaOH solution. The catalytic promotion could be attributed to the dual effects of NaOH and CTAB on the porosity and acidity regulation. Moreover, based on the correlation between the reaction stability and the ratio of Bronsted to Lewis acid concentration with weak-medium strength, measured by Py-IR, it was revealed that the regulation of acidity could play a more important role for better reaction stability. In addition, the physicochemical properties and reaction activity were compared between ZSM-11 samples derived from alkaline treatment with CTAB addition and with tetrapropylammonium bromide (TPABr) addition under the same conditions
Genistein promotes M1 macrophage apoptosis and reduces inflammatory response by disrupting miR-21/TIPE2 pathway
Cardiovascular diseases are a major cause of mortality, and vascular injury, a common pathological basis of cardiovascular disease, is deeply correlated with macrophage apoptosis and inflammatory response. Genistein, a type of phytoestrogen, exerts cardiovascular protective activities, but the underlying mechanism has not been fully elucidated. In this study, RAW264.7 cells were treated with genistein, lipopolysaccharide (LPS), nuclear factor-kappa B (NF-κB) inhibitor, and/or protein kinase B (AKT) agonist to determine the role of genistein in apoptosis and inflammation in LPS-stimulated cells. Simultaneously, high fat diet-fed C57BL/6 mice were administered genistein to evaluate the function of genistein on LPS-induced cardiovascular injury mouse model. Here, we demonstrated that LPS obviously increased apoptosis resistance and inflammatory response of macrophages by promoting miR-21 expression, and miR-21 downregulated tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) expression by targeting the coding region. Genistein reduced miR-21 expression by inhibiting NF-κB, then blocked toll-like receptor 4 (TLR4) pathway and AKT phosphorylation dependent on TIPE2, resulting in inhibition of LPS. Our research suggests that miR-21/TIPE2 pathway is involved in M1 macrophage apoptosis and inflammatory response, and genistein inhibits the progression of LPS-induced cardiovascular injury at the epigenetic level via regulating the promoter region of Vmp1 by NF-κB
- …