33 research outputs found

    Atypical Teratoid/Rhabdoid Tumors in Adults: A Case Report and Treatment-Focused Review

    Get PDF
    Atypical teratoid/rhabdoid tumor is predominantly a childhood tumor and has only been rarely reported in adults; therefore, treatment regimens are often extrapolated from the pediatric experience. Typically, children are treated with craniospinal radiation therapy which is often followed by systemic chemotherapy. Employing pediatric regimens to treat this tumor in adult patients poses a particular risk for myelosuppression, as the prescribed doses in pediatric protocols exceed those tolerated by adults, and conventional craniospinal radiation can be associated with prolonged myelotoxicity and a depletion of the bone marrow reserve in vertebrae of adults. Here we present a case of a woman with a pineal region atypical teratoid/rhabdoid tumor, an unusual adult cancer presenting in an atypical location. This is followed by a review of the disease in adult patients with an emphasis on treatment and suggestions to minimize myelotoxicity

    yuDetecting the percent of peripheral blood mononuclear cells displaying p-STAT-3 in malignant glioma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The signal transducer and activator of transcription 3 (STAT-3) is frequently overexpressed in cancer cells, propagates tumorigenesis, and is a key regulator of immune suppression in cancer patients. The presence of phosphorylated STAT-3 (p-STAT-3) in the tumor can induce p-STAT-3 in tumor-associated immune cells that can return to the circulatory system. We hypothesized that the number of peripheral blood mononuclear cells (PBMCs) displaying p-STAT-3 would be increased in glioma patients, which would correlate with the extent of tumor-expressed p-STAT-3, and that higher p-STAT-3 levels in peripheral blood would correlate with a higher fraction of immune-suppressive regulatory T cells (Tregs).</p> <p>Methods</p> <p>We measured the percentage of PBMCs displaying p-STAT-3 in 19 healthy donors and 45 patients with primary brain tumors. The level of p-STAT-3 in tumor tissue was determined by immunohistochemistry. The degree of immune suppression was determined based on the fraction of Tregs in the CD4 compartment.</p> <p>Results</p> <p>Healthy donors had 4.8 ± 3.6% of PBMCs that expressed p-STAT-3, while the mean proportion of PBMCs displaying p-STAT-3 in patients with GBM was 11.8 ± 13.5% (<it>P </it>= 0.03). We did not observe a correlation by Spearman correlation between the degree of p-STAT-3 levels in the tumor and the percent of PBMCs displaying p-STAT-3. Furthermore, the percent of PBMCs displaying p-STAT-3 in glioma patients was not directly correlated with the fraction of Tregs in the CD4 compartment.</p> <p>Conclusion</p> <p>We conclude that the percent of PBMCs displaying p-STAT-3 may be increased in malignant glioma patients.</p

    Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target.

    Get PDF
    A major rate-limiting step in developing more effective immunotherapies for GBM is our inadequate understanding of the cellular complexity and the molecular heterogeneity of immune infiltrates in gliomas. Here, we report an integrated analysis of 201,986 human glioma, immune, and other stromal cells at the single cell level. In doing so, we discover extensive spatial and molecular heterogeneity in immune infiltrates. We identify molecular signatures for nine distinct myeloid cell subtypes, of which five are independent prognostic indicators of glioma patient survival. Furthermore, we identify S100A4 as a regulator of immune suppressive T and myeloid cells in GBM and demonstrate that deleting S100a4 in non-cancer cells is sufficient to reprogram the immune landscape and significantly improve survival. This study provides insights into spatial, molecular, and functional heterogeneity of glioma and glioma-associated immune cells and demonstrates the utility of this dataset for discovering therapeutic targets for this poorly immunogenic cancer

    Subcortical injury is an independent predictor of worsening neurological deficits following awake craniotomy procedures

    No full text
    Tailored craniotomies for awake procedures limit cortical exposure. Recently we demonstrated that the identification of eloquent areas increased the risk of postoperative deficits. However, it was not clear whether the observed neurological deficits were caused by proximity of functional cortex to the tumor [cortical injury] or subcortical injury. We hypothesize that subcortical injury during tumor resection is an important predictor of postoperative neurological deficits compared to cortical injury. A retrospective review of 214 patients undergoing awake craniotomy was carried out in whom preoperative functional magnetic resonance imaging (fMRI) and cortical mapping (CM) were performed. A radiologist blinded to the clinical data reviewed and graded the postoperative changes on diffusion-weighted MR-imaging (DWI). Of the 40 cases who developed new intraoperative neurological deficit, 36 (90%) occurred during subcortical dissection, 3 (7.5%) during both subcortical and cortical dissection, and 1 (2.5%) during cortical dissection. Neurological dysfunction acquired during subcortical dissection was an independent predictor of postoperative deficits both in the immediate postoperative period (P < .001) and at the 3-month follow-up (P < .001). Significant DWI restriction in the subcortical white matter was predictive of neurological deficits both immediately and at 3 months, P = .011 and P < .001, respectively. New or worsening deficits were seen in 38% of patients; however, at 3 months 13% had a mild persistent neurological deficit. Subcortical injury with significant DWI changes result in postoperative neurological decline despite our efforts to preserve cortical areas of function. This underscores the importance of preserving subcortical fiber tracts during awake craniotomy procedures
    corecore