15 research outputs found

    Ionizing radiations epidemiology does not support the LNT model

    Get PDF
    Abstract Most cancers are multifactorial diseases. Yet, epidemiological modeling of the effect of ionizing radiation (IR) exposures based on the linear no-threshold model at low doses (LNT) has generally not included co-exposure to chemicals, dietary, socio-economic and other risk factors also known to cause the cancers imputed to IR. When so, increased cancer incidences are incorrectly predicted by being solely associated with IR exposures. Moreover, to justify application of the LNT to low doses, high dose-response data, e.g., from the bombing of Hiroshima and Nagasaki, are linearly interpolated to background incidence (which usually has large uncertainty). In order for this interpolation to be correct, it would imply that the biological mechanisms leading to cancer and those that prevent cancer at high doses are exactly the same as at low doses. We show that linear interpolations are incorrect because both the biological and epidemiological evidence for thresholds, or other non-linearities, are more than substantial. We discuss why the LNT model suffers from misspecification errors, multiple testing, and other biases. Moreover, its use by regulatory agencies conflates vague assertions of scientific causation, by conjecturing the LNT, for administrative ease of use

    Calcium-sensing Receptor and Integrin Protein Complexes in Cerebellar Development and Cancer Cell Migration

    No full text
    The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G protein-coupled receptor that senses changes in extracellular divalent cations and maintains systemic calcium homeostasis. Recent studies suggest that CaSR activation can promote cellular migration. In the present study, we initially sought to identify novel CaSR interacting proteins that might be associated with cellular migration. Using a metastatic tumour model consisting of medullary thyroid carcinoma cells (MTCs), and a brain developmental neuronal migration model comprised of highly motile cerebellar granule-cell precursor neurons (GCPs), we established that the CaSR couples to the integrin family of extracellular matrix (ECM) binding proteins to promote cell adhesion and migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to ECM proteins. Co-immunoprecipitation and co-localization studies established that the CaSR and 1-containing integrins were present in a macromolecular complex in MTC cells and GCP neurons. In the tumour cells, CaSR-mediated activation of phospholipase C and rise in intracellular calcium was essential for integrin activation and potentiation of cell adhesion and migration. Conversely, CaSR mediated phosphorylation of ERK2 and AKT signaling, and the subsequent promotion of 1 integrin plasma membrane expression was crucial for cerebellar GCP migration. ThesePh.D

    Review of Treatments for Oropharyngeal Fungal Infections in HIV/AIDS Patients

    No full text
    HIV and AIDS patients are susceptible to opportunistic infections. Oral candidiasis or thrush is the primary manifestation of fungal infection in these patients. The primary objective of this literature review was to summarize established and novel treatment options for oropharyngeal fungal infections in HIV/AIDS patients. Azoles and polyenes are the two primary antifungal drug classes employed for the treatment of oral candidiasis. A literature review was conducted on Medline and Google Scholar in October of 2021 using the keywords “Oral”, “Fungal”, “HIV”, and “Treatment”. Included studies were clinical trials, meta-analyses, and randomized controlled trials. Nineteen studies regarding azoles, polyenes, and novel treatments for oropharyngeal fungal infections in HIV/AIDS patients were examined in this review. The primary concern demonstrated from these studies is increased reports of resistance to antifungals, especially development of fluconazole resistance. Additionally, studies demonstrated that fluconazole had different relapse durations comparative to other medications, and that posaconazole could possibly act as an alternate form of treatment. Nystatin was indicated as a first-line therapy for thrush in multiple studies but could be upstaged by miconazole nitrate in resource-poor settings. Amphotericin B was an effective treatment option and was shown to be resilient in terms of fungal resistance, however potent adverse side effects were reported. Alternative treatments, such as immunoglobulin antibodies and lemon grass, revealed promising antifungal effects for immunocompromised individuals. Taken together, this review provides a thorough summary of treatment options of oropharyngeal fungal infections in HIV/AIDS patients

    A Metabolic Network Mediating the Cycling of Succinate, a Product of ROS Detoxification into α-Ketoglutarate, an Antioxidant

    No full text
    Sulfur is an essential element for life. However, the soil microbe Pseudomonas (P.) fluorescens can survive in a low sulfur environment. When cultured in a sulfur-deficient medium, the bacterium reprograms its metabolic pathways to produce α-ketoglutarate (KG) and regenerate this keto-acid from succinate, a by-product of ROS detoxification. Succinate semialdehyde dehydrogenase (SSADH) and KG decarboxylase (KGDC) work in partnership to synthesize KG. This process is further aided by the increased activity of the enzymes glutamate decarboxylase (GDC) and γ-amino-butyrate transaminase (GABAT). The pool of succinate semialdehyde (SSA) generated is further channeled towards the formation of the antioxidant. Spectrophotometric analyses, HPLC experiments and electrophoretic studies with intact cells and cell-free extracts (CFE) pointed to the metabolites (succinate, SSA, GABA) and enzymes (SSADH, GDC, KGDC) contributing to this KG-forming metabolic machinery. Real-time polymerase chain reaction (RT-qPCR) revealed significant increase in transcripts of such enzymes as SSADH, GDC and KGDC. The findings of this study highlight a novel pathway involving keto-acids in ROS scavenging. The cycling of succinate into KG provides an efficient means of combatting an oxidative environment. Considering the central role of KG in biological processes, this metabolic network may be operative in other living systems

    Development and validation of probe-based multiplex real-time PCR assays for the rapid and accurate detection of freshwater fish species.

    No full text
    Reliable species identification methods are important for industrial environmental monitoring programs. Probe based real-time quantitative polymerase chain reaction (qPCR) provides an accurate, cost-effective and high-throughput method for species identification. Here we present the development and validation of species-specific primers and probes for the cytochrome c oxidase (COI) gene for the identification of eight ecologically and economically important freshwater fish species: lake whitefish (Coregonus clupeaformis), yellow perch (Perca flavescens), rainbow smelt (Osmerus mordax), brook trout (Salvelinus fontinalis), smallmouth bass (Micropterus dolomieu), round whitefish (Prosopium cylindraceum), spottail shiner (Notropis hudsonius) and deepwater sculpin (Myoxocephalus thompsonii). In order to identify novel primer-probe sets with maximum species-specificity, two separate primer-probe design criteria were employed. Highest ranked primer-probe sets from both methods were assayed to identify sequences that demonstrated highest specificity. Specificity was determined using control species from same genus and non-target species from different genus. Selected primer-probe sets were optimized for annealing temperature and primer-probe concentrations to identify minimum reagent parameters. The selected primer-probe sets were highly sensitive, with DNA concentrations as low as 1 ng adequate for positive species identification. A decoder algorithm was developed based on the cumulative qPCR results that allowed for full automation of species identification. Blinded experiments revealed that the combination of the species-specific primer/probes sets with the automated species decoder resulted in target species identification with 100% accuracy. We also conducted a cost/time comparison analysis between the qPCR assays established in this study with other species identification methods. The qPCR technique was the most cost-effective and least time consuming method of species identification. In summary, probe-based multiplex qPCR assays provide a rapid and accurate method for freshwater fish species identification, and the methodology established in this study can be utilized for various other species identification initiatives

    Subchronic Administration and Combination Metabotropic Glutamate and GABA B

    No full text

    Radiation-Induced Alterations in Proliferation, Migration, and Adhesion in Lens Epithelial Cells and Implications for Cataract Development

    No full text
    The lens of the eye is one of the most radiosensitive tissues. Although the exact mechanism of radiation-induced cataract development remains unknown, altered proliferation, migration, and adhesion have been proposed as factors. Lens epithelial cells were exposed to X-rays (0.1–2 Gy) and radiation effects were examined after 12 h and 7 day. Proliferation was quantified using an MTT assay, migration was measured using a Boyden chamber and wound-healing assay, and adhesion was assessed on three extracellular matrices. Transcriptional changes were also examined using RT-qPCR for a panel of genes related to these processes. In general, a nonlinear radiation response was observed, with the greatest effects occurring at a dose of 0.25 Gy. At this dose, a reduction in proliferation occurred 12 h post irradiation (82.06 ± 2.66%), followed by an increase at 7 day (116.16 ± 3.64%). Cell migration was increased at 0.25 Gy, with rates 121.66 ± 6.49% and 232.78 ± 22.22% greater than controls at 12 h and 7 day respectively. Cell adhesion was consistently reduced above doses of 0.25 Gy. Transcriptional alterations were identified at these same doses in multiple genes related to proliferation, migration, and adhesion. Overall, this research began to elucidate the functional changes that occur in lens cells following radiation exposure, thereby providing a better mechanistic understanding of radiation-induced cataract development

    Effect of Prenatal Glucocorticoid Exposure on Circadian Rhythm Gene Expression in the Brains of Adult Rat Offspring

    No full text
    Circadian clocks control many vital aspects of physiology from the sleep-wake cycle to metabolism. The circadian clock operates through transcriptional-translational feedback loops. The normal circadian signaling relies on a ‘master clock’, located in the suprachiasmatic nucleus (SCN), which synchronizes peripheral oscillators. Glucocorticoid receptor (GR) signaling has the ability to reset the phase of peripheral clocks. It has been shown that maternal exposure to glucocorticoids (GCs) can lead to modification of hypothalamic-pituitary-adrenal (HPA) function, impact stress-related behaviors, and result in a hypertensive state via GR activation. We previously demonstrated altered circadian rhythm signaling in the adrenal glands of offspring exposed to the synthetic GC, dexamethasone (Dex). Results from the current study show that prenatal exposure to Dex affects circadian rhythm gene expression in a brain region-specific and a sex-specific manner within molecular oscillators of the amygdala, hippocampus, paraventricular nucleus, and prefrontal cortex, as well as the main oscillator in the SCN. Results also show that spontaneously hypertensive rats (SHR) exhibited dysregulated circadian rhythm gene expression in these same brain regions compared with normotensive Wistar-Kyoto rats (WKY), although the pattern of dysregulation was markedly different from that seen in adult offspring prenatally exposed to GCs

    Fetal programming of adrenal PNMT and hypertension by glucocorticoids in WKY rats is dose and sex-dependent.

    No full text
    Biochemical changes in utero may alter normal fetal development, resulting in disease later in life, a phenomenon known as fetal programming. Recent epidemiological studies link fetal programming to negative health outcomes, such as low birth weight and hypertension in adulthood. Here, we used a WKY rat model and studied the molecular changes triggered by prenatal glucocorticoid (GC) exposure on the development of hypertension, and on the regulation of phenylethanolamine N-methyl transferase (PNMT), the enzyme responsible for biosynthesis of epinephrine, and a candidate gene linked to hypertension. Clinically, high doses of the synthetic GC dexamethasone (DEX) are used to treat infant respiratory distress syndrome. Elevated maternal GCs have been correlated with fetal programming of hypertension. The aim of this study was to determine if lower doses of DEX would not lead to detrimental fetal programming effects such as hypertension. Our data suggests that prenatal stress programs for increased expression of PNMT and altered regulation of PNMT in males and females. Importantly, we identified that DEX mediated programming was more apparent in the male rats, and the lower dose 10ÎĽg/kg/day of DEX did not lead to changes in blood pressure (BP) in female rats suggesting that this dose is below the threshold for programming of hypertension. Furthermore, sex-specific differences were observed in regards to programming mechanisms that may account for hypertension in males

    Identification of Radiation-Induced miRNA Biomarkers Using the CGL1 Cell Model System

    No full text
    MicroRNAs (miRNAs) have emerged as a potential class of biomolecules for diagnostic biomarker applications. miRNAs are small non-coding RNA molecules, produced and released by cells in response to various stimuli, that demonstrate remarkable stability in a wide range of biological fluids, in extreme pH fluctuations, and after multiple freeze–thaw cycles. Given these advantages, identification of miRNA-based biomarkers for radiation exposures can contribute to the development of reliable biological dosimetry methods, especially for low-dose radiation (LDR) exposures. In this study, an miRNAome next-generation sequencing (NGS) approach was utilized to identify novel radiation-induced miRNA gene changes within the CGL1 human cell line. Here, irradiations of 10, 100, and 1000 mGy were performed and the samples were collected 1, 6, and 24 h post-irradiation. Corroboration of the miRNAome results with RT-qPCR verification confirmed the identification of numerous radiation-induced miRNA expression changes at all doses assessed. Further evaluation of select radiation-induced miRNAs, including miR-1228-3p and miR-758-5p, as well as their downstream mRNA targets, Ube2d2, Ppp2r2d, and Id2, demonstrated significantly dysregulated reciprocal expression patterns. Further evaluation is needed to determine whether the candidate miRNA biomarkers identified in this study can serve as suitable targets for radiation biodosimetry applications
    corecore