16 research outputs found

    Causal relationship between gut microbiota and risk of gastroesophageal reflux disease: a genetic correlation and bidirectional Mendelian randomization study

    Get PDF
    BackgroundNumerous observational studies have identified a linkage between the gut microbiota and gastroesophageal reflux disease (GERD). However, a clear causative association between the gut microbiota and GERD has yet to be definitively ascertained, given the presence of confounding variables.MethodsThe genome-wide association study (GWAS) pertaining to the microbiome, conducted by the MiBioGen consortium and comprising 18,340 samples from 24 population-based cohorts, served as the exposure dataset. Summary-level data for GERD were obtained from a recent publicly available genome-wide association involving 78 707 GERD cases and 288 734 controls of European descent. The inverse variance-weighted (IVW) method was performed as a primary analysis, the other four methods were used as supporting analyses. Furthermore, sensitivity analyses encompassing Cochran’s Q statistics, MR-Egger intercept, MR-PRESSO global test, and leave-one-out methodology were carried out to identify potential heterogeneity and horizontal pleiotropy. Ultimately, a reverse MR assessment was conducted to investigate the potential for reverse causation.ResultsThe IVW method’s findings suggested protective roles against GERD for the Family Clostridiales Vadin BB60 group (P = 0.027), Genus Lachnospiraceae UCG004 (P = 0.026), Genus Methanobrevibacter (P = 0.026), and Phylum Actinobacteria (P = 0.019). In contrast, Class Mollicutes (P = 0.037), Genus Anaerostipes (P = 0.049), and Phylum Tenericutes (P = 0.024) emerged as potential GERD risk factors. In assessing reverse causation with GERD as the exposure and gut microbiota as the outcome, the findings indicate that GERD leads to dysbiosis in 13 distinct gut microbiota classes. The MR results’ reliability was confirmed by thorough assessments of heterogeneity and pleiotropy.ConclusionsFor the first time, the MR analysis indicates a genetic link between gut microbiota abundance changes and GERD risk. This not only substantiates the potential of intestinal microecological therapy for GERD, but also establishes a basis for advanced research into the role of intestinal microbiota in the etiology of GERD

    Strong [O III] {\lambda}5007 Compact Galaxies Identified from SDSS DR16 and Their Scaling Relations

    Full text link
    Green pea galaxies are a special class of star-forming compact galaxies with strong [O III]{\lambda}5007 and considered as analogs of high-redshift Ly{\alpha}-emitting galaxies and potential sources for cosmic reionization. In this paper, we identify 76 strong [O III]{\lambda}5007 compact galaxies at z < 0.35 from DR1613 of the Sloan Digital Sky Survey. These galaxies present relatively low stellar mass, high star formation rate, and low metallicity. Both star-forming main sequence relation (SFMS) and mass-metallicity relation (MZR) are investigated and compared with green pea and blueberry galaxies collected from literature. It is found that our strong [O III] {\lambda}5007 compact galaxies share common properties with those compact galaxies with extreme star formation and show distinct scaling relations in respect to those of normal star-forming galaxies at the same redshift. The slope of SFMS is higher, indicates that strong [O III]{\lambda}5007 compact galaxies might grow faster in stellar mass. The lower MZR implies that they may be less chemically evolved and hence on the early stage of star formation. A further environmental investigation confirms that they inhabit relatively low-density regions. Future largescale spectroscopic surveys will provide more details on their physical origin and evolution.Comment: 12 pages, 8 figures, 1 table. Published in A

    DataSheet_2_Autoimmune thyroid disease and myasthenia gravis: a study bidirectional Mendelian randomization.pdf

    No full text
    BackgroundPrevious studies have suggested a potential association between AITD and MG, but the evidence is limited and controversial, and the exact causal relationship remains uncertain.ObjectiveTherefore, we employed a Mendelian randomization (MR) analysis to investigate the causal relationship between AITD and MG.MethodsTo explore the interplay between AITD and MG, We conducted MR studies utilizing GWAS-based summary statistics in the European ancestry. Several techniques were used to ensure the stability of the causal effect, such as random-effect inverse variance weighted, weighted median, MR-Egger regression, and MR-PRESSO. Heterogeneity was evaluated by calculating Cochran’s Q value. Moreover, the presence of horizontal pleiotropy was investigated through MR-Egger regression and MR-PRESSOResultsThe IVW method indicates a causal relationship between both GD(OR 1.31,95%CI 1.08 to 1.60,P=0.005) and autoimmune hypothyroidism (OR: 1.26, 95% CI: 1.08 to 1.47, P =0.002) with MG. However, there is no association found between FT4(OR 0.88,95%CI 0.65 to 1.18,P=0.406), TPOAb(OR: 1.34, 95% CI: 0.86 to 2.07, P =0.186), TSH(OR: 0.97, 95% CI: 0.77 to 1.23, P =0.846), and MG. The reverse MR analysis reveals a causal relationship between MG and GD(OR: 1.50, 95% CI: 1.14 to 1.98, P =3.57e-3), with stable results. On the other hand, there is a significant association with autoimmune hypothyroidism(OR: 1.29, 95% CI: 1.04 to 1.59, P =0.019), but it is considered unstable due to the influence of horizontal pleiotropy (MR PRESSO Distortion Test P ConclusionAITD patients are more susceptible to developing MG, and MG patients also have a higher incidence of GD.</p

    DataSheet_1_Autoimmune thyroid disease and myasthenia gravis: a study bidirectional Mendelian randomization.pdf

    No full text
    BackgroundPrevious studies have suggested a potential association between AITD and MG, but the evidence is limited and controversial, and the exact causal relationship remains uncertain.ObjectiveTherefore, we employed a Mendelian randomization (MR) analysis to investigate the causal relationship between AITD and MG.MethodsTo explore the interplay between AITD and MG, We conducted MR studies utilizing GWAS-based summary statistics in the European ancestry. Several techniques were used to ensure the stability of the causal effect, such as random-effect inverse variance weighted, weighted median, MR-Egger regression, and MR-PRESSO. Heterogeneity was evaluated by calculating Cochran’s Q value. Moreover, the presence of horizontal pleiotropy was investigated through MR-Egger regression and MR-PRESSOResultsThe IVW method indicates a causal relationship between both GD(OR 1.31,95%CI 1.08 to 1.60,P=0.005) and autoimmune hypothyroidism (OR: 1.26, 95% CI: 1.08 to 1.47, P =0.002) with MG. However, there is no association found between FT4(OR 0.88,95%CI 0.65 to 1.18,P=0.406), TPOAb(OR: 1.34, 95% CI: 0.86 to 2.07, P =0.186), TSH(OR: 0.97, 95% CI: 0.77 to 1.23, P =0.846), and MG. The reverse MR analysis reveals a causal relationship between MG and GD(OR: 1.50, 95% CI: 1.14 to 1.98, P =3.57e-3), with stable results. On the other hand, there is a significant association with autoimmune hypothyroidism(OR: 1.29, 95% CI: 1.04 to 1.59, P =0.019), but it is considered unstable due to the influence of horizontal pleiotropy (MR PRESSO Distortion Test P ConclusionAITD patients are more susceptible to developing MG, and MG patients also have a higher incidence of GD.</p

    The causal relationship between gut microbiota and biliary tract cancer: comprehensive bidirectional Mendelian randomization analysis

    No full text
    BackgroundGrowing evidence has shown that gut microbiome composition is associated with Biliary tract cancer (BTC), but the causality remains unknown. This study aimed to explore the causal relationship between gut microbiota and BTC, conduct an appraisal of the gut microbiome’s utility in facilitating the early diagnosis of BTC.MethodsWe acquired the summary data for Genome-wide Association Studies (GWAS) pertaining to BTC (418 cases and 159,201 controls) from the Biobank Japan (BBJ) database. Additionally, the GWAS summary data relevant to gut microbiota (N = 18,340) were sourced from the MiBioGen consortium. The primary methodology employed for the analysis consisted of Inverse Variance Weighting (IVW). Evaluations for sensitivity were carried out through the utilization of multiple statistical techniques, encompassing Cochrane’s Q test, the MR-Egger intercept evaluation, the global test of MR-PRESSO, and a leave-one-out methodological analysis. Ultimately, a reverse Mendelian Randomization analysis was conducted to assess the potential for reciprocal causality.ResultsThe outcomes derived from IVW substantiated that the presence of Family Streptococcaceae (OR = 0.44, P = 0.034), Family Veillonellaceae (OR = 0.46, P = 0.018), and Genus Dorea (OR = 0.29, P = 0.041) exerted a protective influence against BTC. Conversely, Class Lentisphaeria (OR = 2.21, P = 0.017), Genus Lachnospiraceae FCS020 Group (OR = 2.30, P = 0.013), and Order Victivallales (OR = 2.21, P = 0.017) were associated with an adverse impact. To assess any reverse causal effect, we used BTC as the exposure and the gut microbiota as the outcome, and this analysis revealed associations between BTC and five different types of gut microbiota. The sensitivity analysis disclosed an absence of empirical indicators for either heterogeneity or pleiotropy.ConclusionThis investigation represents the inaugural identification of indicative data supporting either beneficial or detrimental causal relationships between gut microbiota and the risk of BTC, as determined through the utilization of MR methodologies. These outcomes could hold significance for the formulation of individualized therapeutic strategies aimed at BTC prevention and survival enhancement

    Formation of 3-MCPD and glycidyl esters in biscuits produced using soybean oil-based diacylglycerol stearin-shortening blends: impacts of different baking temperatures and blending ratios

    No full text
    Diacylglycerol (DAG) is commonly known as one of the precursors for 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) formation. Besides, 3-MCPDE and GE are heat-induced contaminants which can be formed in fat-containing baked products during the baking process. This study attempted to replace the conventional palm-based shortening (SH) with a healthier fat, namely soybean oil-based diacylglycerol stearin (SDAG) in producing biscuits. The effects of different baking temperatures (200, 210 and 220 °C) and SDAG:SH fat blend ratios (0:100, 60:40 (D64S), 80:20 (D82S), 100:0, w/w) towards the biscuits’ physical properties were evaluated. Moreover, the oxidative stability, 3-MCPDPE and GE formation in the fats extracted from the biscuits were also investigated. SDAG-produced biscuit showed slight reductions in the spread ratio compared to the SH-produced biscuit. The elevated baking temperatures resulted in biscuits with increased hardness and low moisture content. Pure SDAG and the other fat blends exhibited significant (p < 0.05) poorer oxidative stability than SH. However, D64S was found to be more oxidative stable compared to SDAG and D82S. The D64S fat blend exhibited the lowest 3-MCPDE and GE formation rates among all fat samples with the increasing baking temperatures. Furthermore, the amount of 3-MCPDE and GE detected in the fats extracted from the biscuits baked at highest temperature (220 °C) were still within the safety limit. In overall, better quality biscuits were produced when lower baking temperature (200 °C) was used as all biscuits baked with different fats showed similar textural properties (hardness and cohesiveness), higher oxidative stability and lower formation of 3-MCPDE and GE compared to biscuits baked at higher temperatures. The findings justified the potential of D64S fat blend in replacing the conventional SH in producing healthier biscuits
    corecore