76 research outputs found

    Adaptive laboratory evolution of a genome-reduced Escherichia coli.

    Get PDF
    Synthetic biology aims to design and construct bacterial genomes harboring the minimum number of genes required for self-replicable life. However, the genome-reduced bacteria often show impaired growth under laboratory conditions that cannot be understood based on the removed genes. The unexpected phenotypes highlight our limited understanding of bacterial genomes. Here, we deploy adaptive laboratory evolution (ALE) to re-optimize growth performance of a genome-reduced strain. The basis for suboptimal growth is the imbalanced metabolism that is rewired during ALE. The metabolic rewiring is globally orchestrated by mutations in rpoD altering promoter binding of RNA polymerase. Lastly, the evolved strain has no translational buffering capacity, enabling effective translation of abundant mRNAs. Multi-omic analysis of the evolved strain reveals transcriptome- and translatome-wide remodeling that orchestrate metabolism and growth. These results reveal that failure of prediction may not be associated with understanding individual genes, but rather from insufficient understanding of the strain's systems biology

    Synthetic biology tools for novel secondary metabolite discovery in streptomyces

    Get PDF

    The architecture of ArgR-DNA complexes at the genome-scale in<i> Escherichia coli</i>

    Get PDF
    DNA-binding motifs that are recognized by transcription factors (TFs) have been well studied; however, challenges remain in determining the in vivo architecture of TF-DNA complexes on a genome-scale. Here, we determined the in vivo architecture of Escherichia coli arginine repressor (ArgR)-DNA complexes using high-throughput sequencing of exonuclease-treated chromatin-immunoprecipitated DNA (ChIP-exo). The ChIP-exo has a unique peak-pair pattern indicating 5′ and 3′ ends of ArgR-binding region. We identified 62 ArgR-binding loci, which were classified into three groups, comprising single, double and triple peak-pairs. Each peak-pair has a unique 93 base pair (bp)-long (±2 bp) ArgR-binding sequence containing two ARG boxes (39 bp) and residual sequences. Moreover, the three ArgR-binding modes defined by the position of the two ARG boxes indicate that DNA bends centered between the pair of ARG boxes facilitate the non-specific contacts between ArgR subunits and the residual sequences. Additionally, our approach may also reveal other fundamental structural features of TF-DNA interactions that have implications for studying genome-scale transcriptional regulatory networks

    The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2)

    Get PDF
    Individual Streptomyces species have the genetic potential to produce a diverse array of natural products of commercial, medical and veterinary interest. However, these products are often not detectable under laboratory culture conditions. To harness their full biosynthetic potential, it is important to develop a detailed understanding of the regulatory networks that orchestrate their metabolism. Here we integrate nucleotide resolution genome-scale measurements of the transcriptome and translatome of Streptomyces coelicolor, the model antibiotic-producing actinomycete. Our systematic study determines 3,570 transcription start sites and identifies 230 small RNAs and a considerable proportion (∼21%) of leaderless mRNAs; this enables deduction of genome-wide promoter architecture. Ribosome profiling reveals that the translation efficiency of secondary metabolic genes is negatively correlated with transcription and that several key antibiotic regulatory genes are translationally induced at transition growth phase. These findings might facilitate the design of new approaches to antibiotic discovery and development

    Elucidation of Akkermansia muciniphila Probiotic Traits Driven by Mucin Depletion

    Get PDF
    Akkermansia muciniphila is widely considered a next-generation beneficial microbe. This bacterium resides in the mucus layer of its host and regulates intestinal homeostasis and intestinal barrier integrity by affecting host signaling pathways. However, it remains unknown how the expression of genes encoding extracellular proteins is regulated in response to dynamic mucosal environments. In this study, we elucidated the effect of mucin on the gene expression and probiotic traits of A. muciniphila. Transcriptome analysis showed that the genes encoding most mucin-degrading enzymes were significantly upregulated in the presence of mucin. By contrast, most genes involved in glycolysis and energy metabolic pathways were upregulated under mucin-depleted conditions. Interestingly, the absence of mucin resulted in the upregulation of 79 genes encoding secreted protein candidates, including Amuc-1100 as well as members of major protein secretion systems. These transcript level changes were consistent with the fact that administration of A. muciniphila grown under mucin-depleted conditions to high-fat diet-induced diabetic mice reduced obesity and improved intestinal barrier integrity more efficiently than administration of A. muciniphila grown under mucin-containing conditions. In conclusion, mucin content in the growth medium plays a critical role in the improvement by A. muciniphila of high-fat diet-induced obesity, intestinal inflammation, and compromised intestinal barrier integrity related to a decrease in goblet cell density. Our findings suggest the depletion of animal-derived mucin in growth medium as a novel principle for the development of A. muciniphila for human therapeutics
    • …
    corecore