1,266 research outputs found

    Functional significance of central D1 receptors in cognition: beyond working memory

    Get PDF
    The role of dopamine D1 receptors in prefrontal cortex function, including working memory, is well acknowledged. However, relatively little is known about their role in other cognitive or emotional functions. We measured both D1 and D2 receptors in the brain using positron emission tomography in healthy subjects, with the aim of elucidating how regional D1 and D2 receptors are differentially involved in cognitive and emotional functions beyond working memory. We found an inverted U-shaped relation between prefrontal D1 receptor availability and Wisconsin Card Sorting Test performance, indicating that too little or too much D1 receptor stimulation impairs working memory or set shifting. In addition, variability of D1 receptor availability in the amygdala and striatum was related to individual differences in emotional responses and decision-making processes, respectively. These observations suggest that the variability of available D1 receptors might be associated with individual differences in brain functions that require phasic dopamine release. An interdisciplinary approach combining molecular imaging of dopamine neurotransmission with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders such as schizophrenia, addiction and Parkinson's disease, as well as novel therapeutics for cognitive impairments observed in them

    A possible serologic biomarker for maternal immune activation-associated neurodevelopmental disorders found in the rat models

    Get PDF
    AbstractEpidemiological studies have shown that maternal infection during early pregnancy increases the risk of neurodevelopmental disorders (i.e., schizophrenia or autism) in offspring. Recently, diagnostic/stratification biomarkers for the maternal immune activation background in patients with neurodevelopmental disorders have been energetically searched for in the patient blood. Here, we report a novel serologic marker candidate for the disorders found in the maternal immune activation (MIA) rat model. Serum proteome analysis of the MIA rat showed that the immunoglobulin (Ig) light chain is reproducibly augmented. The Ig light chain in sera takes two forms — free form or bound to the Ig heavy chain. Only the former is an inflammatory disease marker, but pro-inflammatory cytokine levels in the sera of the MIA rats were below detectable limits of the ELISA protocol we used. We thereby carried out serum assays of Ig light chains and pro-inflammatory cytokines of commercially available schizophrenia patient sera for research. Although the number of samples was limited, we found augmentation of free Ig light chains but not pro-inflammatory cytokines in sporadic schizophrenia patient sera. Our findings suggest that Ig light chain assay of the schizophrenia/autism patient sera would be worthy to be validated in larger scale

    Chemogenetic sensory fMRI reveals behaviorally relevant bidirectional changes in primate somatosensory network

    Get PDF
    手と足の感覚は、実は脳の中でつながっていた --脳障害による活動変化の広がりを見ることで常識を覆す発見、脳機能・疾患機序の理解へ前進--. 京都大学プレスリリース. 2021-10-21.Concurrent genetic neuromodulation and functional magnetic resonance imaging (fMRI) in primates has provided a valuable opportunity to assess the modified brain-wide operation in the resting state. However, its application to link the network operation with behavior still remains challenging. Here, we combined chemogenetic silencing of the primary somatosensory cortex (SI) with tactile fMRI and related behaviors in macaques. Focal chemogenetic silencing of functionally identified SI hand region impaired grasping behavior. The same silencing also attenuated hand stimulation-evoked fMRI signal at both the local silencing site and the anatomically and/or functionally connected downstream grasping network, suggesting altered network operation underlying the induced behavioral impairment. Furthermore, the hand region silencing unexpectedly disinhibited foot representation with accompanying behavioral hypersensitization. These results demonstrate that focal chemogenetic silencing with sensory fMRI in macaques unveils bidirectional network changes to generate multifaceted behavioral impairments, thereby opening a pivotal window toward elucidating the causal network operation underpinning higher brain functions in primates

    Chemogenetic dissection of the primate prefronto-subcortical pathways for working memory and decision-making

    Get PDF
    「何を買うんだっけ」と「どれにしよう」を処理する2つの脳回路を明らかに --霊長類の生体脳で神経経路を可視化・操作する技術で解明、高次脳機能の理解へ大きく前進--. 京都大学プレスリリース. 2021-06-24.The primate prefrontal cortex (PFC) is situated at the core of higher brain functions via neural circuits such as those linking the caudate nucleus and mediodorsal thalamus. However, the distinctive roles of these prefronto-subcortical pathways remain elusive. Combining in vivo neuronal projection mapping with chemogenetic synaptic silencing, we reversibly dissected key pathways from dorsolateral part of the PFC (dlPFC) to the dorsal caudate (dCD) and lateral mediodorsal thalamus (MDl) individually in single monkeys. We found that silencing the bilateral dlPFC-MDl projections, but not the dlPFC-dCD projections, impaired performance in a spatial working memory task. Conversely, silencing the unilateral dlPFC-dCD projection, but not the unilateral dlPFC-MDl projection, altered preference in a decision-making task. These results revealed dissociable roles of the prefronto-subcortical pathways in working memory and decision-making, representing the technical advantage of imaging-guided pathway-selective chemogenetic manipulation for dissecting neural circuits underlying cognitive functions in primates

    Chemogenetic attenuation of cortical seizures in nonhuman primates

    Get PDF
    「てんかん」の発生を時間的・空間的にピンポイントで抑える画期的な治療法を開発 --世界で初めてサルでの有効性を実証、臨床応用に向け大きく前進--. 京都大学プレスリリース. 2023-03-01.Epilepsy is a disorder in which abnormal neuronal hyperexcitation causes several types of seizures. Because pharmacological and surgical treatments occasionally interfere with normal brain function, a more focused and on-demand approach is desirable. Here we examined the efficacy of a chemogenetic tool—designer receptors exclusively activated by designer drugs (DREADDs)—for treating focal seizure in a nonhuman primate model. Acute infusion of the GABAA receptor antagonist bicuculline into the forelimb region of unilateral primary motor cortex caused paroxysmal discharges with twitching and stiffening of the contralateral arm, followed by recurrent cortical discharges with hemi- and whole-body clonic seizures in two male macaque monkeys. Expression of an inhibitory DREADD (hM4Di) throughout the seizure focus, and subsequent on-demand administration of a DREADD-selective agonist, rapidly suppressed the wide-spread seizures. These results demonstrate the efficacy of DREADDs for attenuating cortical seizure in a nonhuman primate model

    Dopamine D_1 Receptors and Nonlinear Probability Weighting in Risky Choice

    Get PDF
    Misestimating risk could lead to disadvantaged choices such as initiation of drug use (or gambling) and transition to regular drug use (or gambling). Although the normative theory in decision-making under risks assumes that people typically take the probability-weighted expectation over possible utilities, experimental studies of choices among risks suggest that outcome probabilities are transformed nonlinearly into subjective decision weights by a nonlinear weighting function that overweights low probabilities and underweights high probabilities. Recent studies have revealed the neurocognitive mechanism of decision-making under risk. However, the role of modulatory neurotransmission in this process remains unclear. Using positron emission tomography, we directly investigated whether dopamine D_1 and D_2 receptors in the brain are associated with transformation of probabilities into decision weights in healthy volunteers. The binding of striatal D_1 receptors is negatively correlated with the degree of nonlinearity of weighting function. Individuals with lower striatal D_1 receptor density showed more pronounced overestimation of low probabilities and underestimation of high probabilities. This finding should contribute to a better understanding of the molecular mechanism of risky choice, and extreme or impaired decision-making observed in drug and gambling addiction

    Neuroticism Associates with Cerebral in Vivo Serotonin Transporter Binding Differently in Males and Females

    Get PDF
    Background: Neuroticism is a major risk factor for affective disorders. This personality trait has been hypothesized to associate with synaptic availability of the serotonin transporter, which critically controls serotonergic tone in the brain. However, earlier studies linking neuroticism and serotonin transporter have failed to produce converging findings. Because sex affects both the serotonergic system and the risk that neuroticism poses to the individual, sex may modify the association between neuroticism and serotonin transporter, but this question has not been investigated by previous studies. Methods: Here, we combined data from 4 different positron emission tomography imaging centers to address whether neuroticism is related to serotonin transporter binding in vivo. The data set included serotonin transporter binding potential values from the thalamus and striatum and personality scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. Results: We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P = .008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P = .014). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex.Peer reviewe

    Abnormal axon guidance signals and reduced interhemispheric connection via anterior commissure in neonates of marmoset ASD model

    Get PDF
    In autism spectrum disorder (ASD), disrupted functional and structural connectivity in the social brain has been suggested as the core biological mechanism underlying the social recognition deficits of this neurodevelopmental disorder. In this study, we aimed to identify genetic and neurostructural abnormalities at birth in a non-human primate model of ASD, the common marmoset with maternal exposure to valproic acid (VPA), which has been reported to display social recognition deficit in adulthood. Using a comprehensive gene expression analysis, we found that 20 genes were significantly downregulated in VPA-exposed neonates. Of these, Frizzled3 (FZD3) and PIK3CA were identified in an axon guidance signaling pathway. FZD3 is essential for the normal development of the anterior commissure (AC) and corpus callosum (CC); hence, we performed diffusion tensor magnetic resonance imaging with a 7-Tesla scanner to measure the midsagittal sizes of these structures. We found that the AC size in VPA-exposed neonates was significantly smaller than that in age-matched controls, while the CC size did not differ. These results suggest that downregulation of the genes related to axon guidance and decreased AC size in neonatal primates may be linked to social brain dysfunctions that can happen later in life

    Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders

    Get PDF
    Elucidating the neural and genetic factors underlying psychiatric illness is hampered by current methods of clinical diagnosis. The identification and investigation of clinical endophenotypes may be one solution, but represents a considerable challenge in human subjects. Here we report that mice heterozygous for a null mutation of the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha-CaMKII+/-) have profoundly dysregulated behaviours and impaired neuronal development in the dentate gyrus (DG). The behavioral abnormalities include a severe working memory deficit and an exaggerated infradian rhythm, which are similar to symptoms seen in schizophrenia, bipolar mood disorder and other psychiatric disorders. Transcriptome analysis of the hippocampus of these mutants revealed that the expression levels of more than 2000 genes were significantly changed. Strikingly, among the 20 most downregulated genes, 5 had highly selective expression in the DG. Whereas BrdU incorporated cells in the mutant mouse DG was increased by more than 50 percent, the number of mature neurons in the DG was dramatically decreased. Morphological and physiological features of the DG neurons in the mutants were strikingly similar to those of immature DG neurons in normal rodents. Moreover, c-Fos expression in the DG after electric footshock was almost completely and selectively abolished in the mutants. Statistical clustering of human post-mortem brains using 10 genes differentially-expressed in the mutant mice were used to classify individuals into two clusters, one of which contained 16 of 18 schizophrenic patients. Nearly half of the differentially-expressed probes in the schizophrenia-enriched cluster encoded genes that are involved in neurogenesis or in neuronal migration/maturation, including calbindin, a marker for mature DG neurons. Based on these results, we propose that an "immature DG" in adulthood might induce alterations in behavior and serve as a promising candidate endophenotype of schizophrenia and other human psychiatric disorders
    corecore