277 research outputs found

    Crystallization and preliminary X-ray crystallographic analysis of a yedU gene product from Escherichia coli

    Get PDF
    A yedU gene product with a molecular mass of 31 kDa is a hypothetical protein with no known function. The protein was purified and crystallized at 296 K. X-ray diffraction data have been collected to 2.3 Angstrom using synchrotron radiation. The crystals belong to the primitive orthorhombic system, with unit-cell parameters a = 50.56, b = 63.45, c = 168.02 Angstrom. The asymmetric unit contains two monomers of the protein, with a corresponding V-M of 2.25 Angstrom(3) Da(-1) and a solvent content of 44.84%.open2

    Inhibition of CLIC4 Enhances Autophagy and Triggers Mitochondrial and ER Stress-Induced Apoptosis in Human Glioma U251 Cells under Starvation

    Get PDF
    CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to mitochondria, endoplasmic reticulum (ER), nucleus and cytoplasm, and participates in the apoptotic response to stress. Apoptosis and autophagy, the main types of the programmed cell death, seem interconnected under certain stress conditions. However, the role of CLIC4 in autophagy regulation has yet to be determined. In this study, we demonstrate upregulation and nuclear translocation of the CLIC4 protein following starvation in U251 cells. CLIC4 siRNA transfection enhanced autophagy with increased LC3-II protein and puncta accumulation in U251 cells under starvation conditions. In that condition, the interaction of the 14-3-3 epsilon isoform with CLIC4 was abolished and resulted in Beclin 1 overactivation, which further activated autophagy. Moreover, inhibiting the expression of CLIC4 triggered both mitochondrial apoptosis involved in Bax/Bcl-2 and cytochrome c release under starvation and endoplasmic reticulum stress-induced apoptosis with CHOP and caspase-4 upregulation. These results demonstrate that CLIC4 nuclear translocation is an integral part of the cellular response to starvation. Inhibiting the expression of CLIC4 enhances autophagy and contributes to mitochondrial and ER stress-induced apoptosis under starvation

    A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs) have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities.</p> <p>Results</p> <p>Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase) were completely retained after cross-linking. The V<sub>max</sub>/K<sub>m </sub>values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50°C, 60°C and 70°C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity.</p> <p>Conclusion</p> <p>A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1) hydrolysis of pectin, 2) hydrolysis of xylan and 3) hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes.</p

    Determination of EGFR Endocytosis Kinetic by Auto-Regulatory Association of PLD1 with mu 2

    Get PDF
    Background: Upon ligand binding, cell surface signaling receptors are internalized through a process tightly regulated by endocytic proteins and adaptor protein 2 (AP2) to orchestrate them. Although the molecular identities and roles of endocytic proteins are becoming clearer, it is still unclear what determines the receptor endocytosis kinetics which is mainly regulated by the accumulation of endocytic apparatus to the activated receptors. Methodology/Principal Findings: Here we employed the kinetic analysis of endocytosis and adaptor recruitment to show that ??2, a subunit of AP2 interacts directly with phospholipase D (PLD)1, a receptor-associated signaling protein and this facilitates the membrane recruitment of AP2 and the endocytosis of epidermal growth factor receptor (EGFR). We also demonstrate that the PLD1-??2 interaction requires the binding of PLD1 with phosphatidic acid, its own product. Conclusions/Significance: These results suggest that the temporal regulation of EGFR endocytosis is achieved by auto-regulatory PLD1 which senses the receptor activation and triggers the translocation of AP2 near to the activated receptor.open3

    Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils

    Get PDF
    Wnt5a is a ligand that activates the noncanonical Wnt signaling pathways (??-catenin-independent pathways). Human neutrophils expressed several Wnt5a receptors, such as Frizzled 2, 5 and 8. Stimulation of human neutrophils with Wnt5a caused chemotactic migration and the production of two important chemokines, CXCL8 and CCL2. CCL2 production by Wnt5a was mediated by a pertussis toxin-sensitive G-protein-dependent pathway. Wnt5a also stimulated the phosphorylation of three mitogen-activated protein kinases (MAPKs: ERK, p38 MAPK and JNK) and Akt. Inhibition of ERK, p38 MAPK or JNK by specific inhibitors induced a dramatic reduction in Wnt5a-induced CCL2 production. Supernatant collected from lipopolysaccharide-stimulated macrophages induced neutrophil chemotaxis, which was significantly inhibited by anti-Wnt5a antibody. Our results suggested that Wnt5a may contribute to neutrophil recruitment, mediating the inflammation response.open4

    Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis

    Get PDF
    Background: Prostate-specific antigen (PSA) screening has low specificity. Assessment of methylation status in body fluids may complement PSA screening if the test has high specificity. Method: The purpose of this study was to conduct a meta-analysis of the sensitivity and specificity for prostate cancer detection of glutathione-s-transferase–π (GSTP1) methylation in body fluids (plasma, serum, whole blood, urine, ejaculate, and prostatic secretions). We conducted a comprehensive literature search on Medline (Pubmed). We included studies if they met all four of the following criteria: (1) measurement of DNA methylation in body fluids; (2) a case-control or case-only design; (3) publication in an English journal; and (4) adult subjects. Reviewers conducted data extraction independently using a standardised protocol. Twenty-two studies were finally included in this paper. Primer sequences and methylation method in each study were summarised and evaluated using meta-analyses. This paper represents a unique cross-disciplinary approach to molecular epidemiology. Results: The pooled specificity of GSTP1 promoter methylation measured in plasma, serum, and urine samples from negative-biopsy controls was 0.89 (95% CI, 0.80–0.95). Stratified analyses consistently showed a high specificity across different sample types and methylation methods (include both primer sequences and location). The pooled sensitivity was 0.52 (95% CI, 0.40–0.64). Conclusions: The pooled specificity of GSTP1 promoter methylation measures in plasma, serum, and urine was excellent and much higher than the specificity of PSA. The sensitivity of GSTP1 was modest, no higher than that of PSA. These results suggest that measurement of GSTP1 promoter methylation in plasma, serum, or urine samples may complement PSA screening for prostate cancer diagnosis

    Identification of a Novel Binding Partner of Phospholipase Cβ1: Translin-Associated Factor X

    Get PDF
    Mammalian phospholipase Cβ1 (PLCβ1) is activated by the ubiquitous Gαq family of G proteins on the surface of the inner leaflet of plasma membrane where it catalyzes the hydrolysis of phosphatidylinositol 4,5 bisphosphate. In general, PLCβ1 is mainly localized on the cytosolic plasma membrane surface, although a substantial fraction is also found in the cytosol and, under some conditions, in the nucleus. The factors that localize PLCβ1in these other compartments are unknown. Here, we identified a novel binding partner, translin-associated factor X (TRAX). TRAX is a cytosolic protein that can transit into the nucleus. In purified form, PLCβ1 binds strongly to TRAX with an affinity that is only ten-fold weaker than its affinity for its functional partner, Gαq. In solution, TRAX has little effect on the membrane association or the catalytic activity of PLCβ1. However, TRAX directly competes with Gαq for PLCβ1 binding, and excess TRAX reverses Gαq activation of PLCβ1. In C6 glia cells, endogenous PLCβ1 and TRAX colocalize in the cytosol and the nucleus, but not on the plasma membrane where TRAX is absent. In Neuro2A cells expressing enhanced yellow and cyano fluorescent proteins (i.e., eYFP- PLCβ1 and eCFP-TRAX), Förster resonance energy transfer (FRET) is observed mostly in the cytosol and a small amount is seen in the nucleus. FRET does not occur at the plasma membrane where TRAX is not found. Our studies show that TRAX, localized in the cytosol and nucleus, competes with plasma-membrane bound Gαq for PLCβ1 binding thus stabilizing PLCβ1 in other cellular compartments

    Inhibition of Post-Synaptic Kv7/KCNQ/M Channels Facilitates Long-Term Potentiation in the Hippocampus

    Get PDF
    Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M1 mAChR on CA1 pyramidal cells inhibit both small conductance Ca2+-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca2+calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M1 mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels
    corecore