740 research outputs found

    Toxicity assessment of modified Cry1Ac1 proteins and genetically modified insect-resistant Agb0101 rice

    Get PDF
    Insect-resistant Agb0101 rice was recently developed by modifying the cry1ac1 gene by changing codon usage changes relative to the native truncated cry1ac1 gene. To assess the toxicity of genetically modified Agb0101 rice, we conducted bioinfomational comparisons of the amino acid sequences that are not similar to known toxic proteins. Sufficient quantities of mCry1Ac1 protein were produced in Escherichia coli for in vitro evaluation and animal study. We compared the amino acid sequences and molecular mass. There have the same amino acid sequences and molecular masses after purifying the modified Cry1Ac1 (mCry1Ac1) protein from highly expressed bacteria and genetically modified rice were identical. We also investigated the acute and 90-days oral toxicities. No adverse effects were observed in mice following acute oral exposure to 2,000 mg/ kg body weight mCry1Ac1 protein of body weight and 90 days oral exposure to Agb0101. These results indicate that mCry1Ac1 proteins and Agb0101 rice demonstrate no adverse effects in these tests when applied via gavage and feed, respectively.Key words: Modified Cry1Ac1, food safety assessment, toxicity, insect- resistant rice Agb0101

    Soluble Cytokine Receptors (sIL-2Rα, sIL-2RÎČ) Induce Subunit-Specific Behavioral Responses and Accumulate in the Cerebral Cortex and Basal Forebrain

    Get PDF
    Soluble cytokine receptors are normal constituents of body fluids that regulate peripheral cytokine and lymphoid activity. Levels of soluble IL-2 receptors (sIL-2R) are elevated in psychiatric disorders linked with autoimmune processes, including ones in which repetitive stereotypic behaviors and motor disturbances are present. However, there is no evidence that sIL-2Rs (or any peripheral soluble receptor) induce such behavioral changes, or that they localize in relevant brain regions. Here, we determined in male Balb/c mice the effects of single peripheral injections of sIL-2Rα or sIL-2RÎČ (0–2 ”g/male Balb/c mouse; s.c.) on novelty-induced ambulatory activity and stereotypic motor behaviors. We discovered that sIL-2Rα increased the incidence of in-place stereotypic motor behaviors, including head up head bobbing, rearing/sniffing, turning, and grooming behavior. A wider spectrum of behavioral changes was evident in sIL-2RÎČ-treated mice, including increases in vertical and horizontal ambulatory activity and stereotypic motor movements. To our knowledge, this is the first demonstration that soluble receptors induce such behavioral disturbances. In contrast, soluble IL-1 Type-1 receptors (0–4 ”g, s.c.) didn't appreciably affect these behaviors. We further demonstrated that sIL-2Rα and sIL-2RÎČ induced marked increases in c-Fos in caudate-putamen, nucleus accumbens and prefrontal cortex. Anatomical specificity was supported by the presence of increased activity in lateral caudate in sIL-2Rα treated mice, while sIL-2RÎČ treated mice induced greater c-Fos activity in prepyriform cortex. Moreover, injected sIL-2Rs were widely distributed in regions that showed increased c-Fos expression. Thus, sIL-2Rα and sIL-2RÎČ induce marked subunit- and soluble cytokine receptor-specific behavioral disturbances, which included increases in the expression of ambulatory activity and stereotypic motor behaviors, while inducing increased neuronal activity localized to cortex and striatum. These findings suggest that sIL-2Rs act as novel immune-to- brain messengers and raise the possibility that they contribute to the disease process in psychiatric disorders in which marked increases in these receptors have been reported

    Intravascular Ultrasound (IVUS): A Potential Arthroscopic Tool for Quantitative Assessment of Articular Cartilage

    Get PDF
    Conventional ultrasound examination of the articular cartilage performed externally on the body surface around the joint has limited accuracy due to the inadequacy in frequency used. In contrast to this, minimally invasive arthroscopy-based ultrasound with adequately high frequency may be a better alternative to assess the cartilage. Up to date, no special ultrasound transducer for imaging the cartilage in arthroscopic use has been designed. In this study, we introduced the intravascular ultrasound (IVUS) for this purpose. An IVUS system with a catheter-based probe (Ø ≈ 1mm) was used to measure the thickness and surface acoustical reflection of the bovine patellar articular cartilage in vitro before and after degeneration induced by enzyme treatments. Similar measurement was performed using another high frequency ultrasound system (Vevo) with a probe of much larger size and the results were compared between the two systems. The thickness measured using IVUS was highly correlated (r = 0.985, p < 0.001) with that obtained by Vevo. Thickness and surface reflection amplitude measured using IVUS on the enzymatically digested articular cartilage showed changes similar to those obtained by Vevo, which were expectedly consistent with previous investigations. IVUS can be potentially used for the quantitative assessment of articular cartilage, with its ready-to-use arthroscopic feature

    Platinum Assisted Vapor–Liquid–Solid Growth of Er–Si Nanowires and Their Optical Properties

    Get PDF
    We report the optical activation of erbium coated silicon nanowires (Er–SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor–liquid–solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core–shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er–SiNWs

    The Cell Shape-determining Csd6 Protein from Helicobacter pylori Constitutes a New Family of L,D-Carboxypeptidase

    Get PDF
    Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of L,D-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known L,D-transpeptidases. Mass analyses confirm that Csd6 functions only as an L,D-carboxypeptidase and not as an L,D-transpeptidase. The D-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of L,D-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori.1165Ysciescopu

    Clinical Implication of Targeting of Cancer Stem Cells

    Get PDF
    The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base

    Errors in the measurement of voltage-activated ion channels in cell-attached patch-clamp recordings

    Get PDF
    Patch-clamp recording techniques have revolutionized understanding of the function and sub-cellular location of ion channels in excitable cells. The cell-attached patch-clamp configuration represents the method of choice to describe the endogenous properties of voltage-activated ion channels in the axonal, somatic and dendritic membrane of neurons, without disturbance of the intracellular milieu. Here, we directly examine the errors associated with cell-attached patch-clamp measurement of ensemble ion channel activity. We find for a number of classes of voltage-activated channels, recorded from the soma and dendrites of neurons in acute brain-slices and isolated cells, that the amplitude and kinetics of ensemble ion channel activity recorded in cell-attached patches is significantly distorted by transmembrane voltage changes generated by the flow of current through the activated ion channels. We outline simple error–correction procedures that allow a more accurate description of the density and properties of voltage-activated channels to be incorporated into computational models of neurons

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications

    Get PDF
    Dye-sensitized solar cells (DSSCs) were fabricated by using well-crystallized ZnO nanocombs directly grown onto the fluorine-doped tin oxide (FTO) via noncatalytic thermal evaporation process. The thin films of as-grown ZnO nanocombs were used as photoanode materials to fabricate the DSSCs, which exhibited an overall light to electricity conversion efficiency of 0.68% with a fill factor of 34%, short-circuit current of 3.14 mA/cm2, and open-circuit voltage of 0.671 V. To the best of our knowledge, this is first report in which thin film of ZnO nanocombs was used as photoanode materials to fabricate the DSSCs

    Mobility, Balance and Falls in Persons with Multiple Sclerosis

    Get PDF
    BACKGROUND: There is a lack of information concerning the relation between objective measures of gait and balance and fall history in persons with MS (PwMS). This investigation assessed the relation between demographic, clinical, mobility and balance metrics and falls history in persons with multiple sclerosis (MS). METHODS: 52 ambulatory persons with MS (PwMS) participated in the investigation. All persons provided demographic information including fall history over the last 12 months. Disease status was assessed with Expanded Disability Status Scale (EDSS). Walking speed, coordination, endurance and postural control were quantified with a multidimensional mobility battery. RESULTS: Over 51% of the participants fell in the previous year with 79% of these people being suffering recurrent falls. Overall, fallers were older, had a greater prevalence of assistive devices use, worse disability, decreased walking endurance, and greater postural sway velocity with eyes closed compared to non-fallers. Additionally, fallers had greater impairment in cerebellar, sensory, pyramidal, and bladder/bowel subscales of the EDSS. CONCLUSIONS: The current observations suggest that PwMS who are older, more disabled, utilize an assistive device, have decreased walking coordination and endurance and have diminished balance have fallen in the previous year. This suggests that individuals who meet these criteria need to be carefully monitored for future falls. Future research is needed to determine a prospective model of falls specific to PwMS. Additionally, the utility of interventions aimed at reducing falls and fall risk in PwMS needs to be established
    • 

    corecore