17 research outputs found

    Biodiesel via in situ wet microalgae biotransformation: Zwitter-type ionic liquid supported extraction and transesterification

    Get PDF
    The production of biodiesel derived from microalgae is among the most forthcoming technologies that provide an ecologic alternative to fossil fuels. Herein, a method was developed that enables the direct extraction and conversion of algal oil to biodiesel without prior isolation. The reaction occurs in aqueous media catalyzed by immobilized Candida antarctica lipase B (Novozyme 435). Zwitter-type ionic liquids were used as cocatalyst to improve the selectivity and reactivity of the enzyme. In a model reaction with sunflower oil, 64% biodiesel was obtained. Applying this method to a slurry of whole-cell Chlorella zof ingiensis in water resulted in 74.8% of lipid extraction, with 27.7% biotransformation products and up to 16% biodiesel. Factors that reduced the lipase activity with whole-cell algae were subsequently probed and discussed. This "in situ" method shows an improvement to existing methods, since it integrates the oil extraction and conversion into an one-pot procedure in aqueous conditions. The extraction is nondisruptive, and is a model for a greener algae to biodiesel process

    Biofilm vivacity and destruction on antimicrobial nanosurfaces assayed within a microbial fuel cell

    No full text
    A novel method was developed to assay the antimicrobial capacity of nanostructured surfaces for medical implants in a bicathodic microbial fuel cell. Nano-structured gold surfaces with protruding nanopillars and nanorings were investigated. Escherichia coli K12 were used as a model microbe to record electronic effects caused by the interaction with nanosurfaces. The nanostructured gold surfaces enabled power density maxima up to 1910 mW/m2, indicating fair vivacity, while flat surfaces on the nanoscale provided almost no power 0.35 mW/m2. The biofilm presence on antimicrobial nanosurfaces was confirmed by the addition of ampicillin and its bactericidal effect resulted in oscillating and declining potentiometric signals. Current density experiments showed that biofilms on antimicrobial nanostructured electrodes caused low currents, indicating that E.coli biofilm remained functional before destruction. The bicathodic microbial fuel cell sensor is a novel tool for evaluating antimicrobial effects caused by nanosurfaces and antibiotics

    Microbial electrolysis cell accelerates phosphate remobilisation from iron phosphate contained in sewage sludge

    No full text
    Phosphate was remobilised from iron phosphate contained in digested sewage sludge using a bio-electric cell. A significant acceleration above former results was caused by strongly basic catholytes. For these experiments a dual chambered microbial electrolysis cell with a small cathode (40 mL) and an 80 times larger anode (2.5 L) was equipped with a platinum sputtered reticulated vitreous carbon cathode. Various applied voltages (0.2–6.0 V) generated moderate to strongly basic catholytes using artificial waste water with pH close to neutral. Phosphate from iron phosphate contained in digested sewage sludge was remobilised most effectively at pH ∌13 with up to 95% yield. Beside minor electrochemical reduction, hydroxyl substitution was the dominating remobilisation mechanism. Particle–fluid kinetics using the “shrinking core” model allowed us to determine the reaction controlling step. Reaction rates changed with temperature (15–40 °C) and an activation energy of Ea = 55 kJ mol−1 was found. These analyses indicated chemical and physical reaction control, which is of interest for future scale-up work. Phosphate remobilisation rates increased significantly, yields doubled and recovered PO43− concentrations increased four times using a task specific bio-electric system. The result is a sustainable process for decentralized phosphate mining and a green chemical base generator useful also for many other sustainable processing needs

    Microbial fuel cell stack power to lithium battery stack ::pilot concept forscale up

    No full text
    A stack to stack microbial fuel cell power to batteries storage was investigated on the pilot scale with the aim to scale up in future. A 12 unit MFC-stack, equipped with maximum power point tracking (MPPT) and lithium polymer batteries (3.7 V), was set up. The MFC-stack architecture was simplified by sharing partially electrolytes. The serial 12 unit MFC-stack was first used as a linear assembly of all MFC units and then subdivided into three MFC-sub-stacks which enhanced power extraction by 8.5 times. To balance the stack power generation, the external circuits were alternated into zigzag, braid and random figurations as well in rational directed configurations. Finally, batteries permutation along with MPPT enabled faster and balanced lithium battery stack charging. Balanced conditions resulted in time shift oscillations, the absence of unwanted power pooling and voltage reversals. All in all, the work showed how to generate and store power from an 12 L microbial fuel cell stack with partly common electrolytes

    Modeling of Sustainable Base Production by Microbial Electrolysis Cell

    No full text
    A predictive model for the microbial/electrochemical base formation from wastewater was established and compared to experimental conditions within a microbial electrolysis cell. A Na2SO4/K2SO4 anolyte showed that model prediction matched experimental results. Using Shewanella oneidensis MR-1, a strong base (pH approximate to 13) was generated using applied voltages between 0.3 and 1.1V. Due to the use of bicarbonate, the pH value in the anolyte remained unchanged, which is required to maintain microbial activity

    Modeling of sustainable base production by microbial electrolysis cell

    No full text
    A predictive model for the microbial/electrochemical base formation from wastewater was established and compared to experimental conditions within a microbial electrolysis cell. A Na2SO4/K2SO4 anolyte showed that model prediction matched experimental results. Using Shewanella oneidensis MR-1, a strong base (pH≈13) was generated using applied voltages between 0.3 and 1.1 V. Due to the use of bicarbonate, the pH value in the anolyte remained unchanged, which is required to maintain microbial activity

    Probing electron transfer with Escherichia coli ::a method to examine exoelectronics in microbial fuel cell type systems

    No full text
    Escherichia coli require mediators or composite anodes for substantial outward electron transfer, >8 A/m2. To what extent non-mediated direct electron transfer from the outer cell envelope to the anode occurs with E. coli is a debated issue. To this end, the redox behaviour of non-exoelectrogenic E. coli K12 was investigated using a bi-cathodic microbial fuel cell. The electromotive force caused by E. coli biofilms mounted 0.2–0.3 V above the value with the surrounding medium. Surprisingly, biofilms that started forming at different times synchronised their EMF even when physically separated. Non-mediated electron transfer from E. coli biofilms increased above background currents passing through the cultivation medium. In some instances, currents were rather high because of a sudden discharge of the medium constituents. Mediated conditions provided similar but more pronounced effects. The combined step-by-step method used allowed a systematic analysis of exoelectronics as encountered in microbial fuel cells

    Biodiesel via in situ wet microalgae biotransformation ::zwitter-type ionic liquid supported extraction and transesterification

    No full text
    The production of biodiesel derived from microalgae is among the most forthcoming technologies that provide an ecologic alternative to fossil fuels. Herein, a method was developed that enables the direct extraction and conversion of algal oil to biodiesel without prior isolation. The reaction occurs in aqueous media catalyzed by immobilized Candida antarctica lipase B (Novozyme 435). Zwitter-type ionic liquids were used as cocatalyst to improve the selectivity and reactivity of the enzyme. In a model reaction with sunflower oil, 64% biodiesel was obtained. Applying this method to a slurry of whole-cell Chlorella zofingiensis in water resulted in 74.8% of lipid extraction, with 27.7% biotransformation products and up to 16% biodiesel. Factors that reduced the lipase activity with whole-cell algae were subsequently probed and discussed. This “in situ” method shows an improvement to existing methods, since it integrates the oil extraction and conversion into an one-pot procedure in aqueous conditions. The extraction is nondisruptive, and is a model for a greener algae to biodiesel process

    Simulation and resolution of voltage reversal in microbial fuel cell stack

    No full text
    To understand the biotic and non-biotic contributions of voltage reversals in microbial fuel cell stacks (MFC) they were simulated with an electronic MFC-Stack mimic. The simulation was then compared with results from a real 3 L triple MFC-Stack with shared anolyte. It showed that voltage reversals originate from the variability of biofilms, but also the external load plays a role. When similar biofilm properties were created on all anodes the likelihood of voltage reversals was largely reduced. Homogenous biofilms on all anodes were created by electrical circuit alternation and electrostimulation. Conversely, anolyte recirculation, or increased nutriment supply, postponed reversals and unfavourable voltage asymmetries on anodes persisted. In conclusion, voltage reversals are often a negative event but occur also in close to best MFC-Stack performance. They were manageable and this with a simplified MFC architecture in which multiple anodes share the same anolyte

    Microbial community diversity changes during voltage reversal repair in a 12-unit microbial fuel cell

    No full text
    Microbial fuel cell stacks (MFC-Stack) are often confronted with voltage reversals, likely due to an interplay between microbial community dynamics and insufficient electric circuit balancing. Herein, we provide new insight into voltage reversals by examining the microbiomes of twelve MFC units of a 12-liter Pilot-MFC-Stack during repair. Different biofilm repair methods (self-healing, electrostimulation, and re-acclimatization upon cross-inoculation) were used to evaluate the microbial community response. In addition, MFC-Stack simulation was performed based on Kirchhoff’s Second Law to predict values for source potentials and post-evaluate internal resistances. Analysis of the 16S rRNA amplicon sequencing data suggests that the biofilm repair methods could slowly heal damaged biofilms. Notably, severely voltage reversed MFC units had low electrogen relative abundances (18%) and positive anode potentials, while strong bioanodes and contained more than 50% electrogens and had negative anode potentials. Between-community analyses (beta diversity ordination and multinomial regression) of the voltage reversed MFC units revealed differences among biofilms in contrast to healthy/strong MFC units. Permutational multivariate analysis of variance (PERMANOVA) confirmed that reversed biofilms were, indeed, significantly (p < 0.05) different from stronger ones. Overall, these analyses demonstrated the utility of combining electrotechnical and microbial community analyses, especially beta diversity ordination and multinomial regression, to understand problematic MFC units and the potential success of a biofilm repair method. Finally, thicker biofilms were usually healthier and stronger, although thickness was no guarantee for proper structure and power function as all factors were interdependent. There was an evolutionary trend that strong anodes became stronger/healthier and others weaker. This spontaneous trend has to be considered to avoid irreversible voltage reversals and to repair electrogenic biofilms in an MFC-Stack
    corecore