61 research outputs found

    Effect of Pass-set Shape on Formability in Synchronous Multipass Spinning

    Get PDF
    AbstractSynchronous multi pass spinning is a metal spinning method that can form asymmetric shapes with a noncircular bottom and vertical walls from a metal sheet. In this method, the tool trajectory is calculated by linear interpolation between the mandrel shape and the blank disk shape along a pass set. Here, the pass set corresponds to the tool trajectory in conventional spinning. The aim of this study is to examine the effect of a pass set on the formability of a circular cup shape and a rectangular box shape. We have experimentally examined the formability using various pass sets made by simple rule. The angle growth of the rotational pass set, the incremental movement of the translational pass set, and the nominal product height are varied for comparison in the experiments

    Nanometer-thin TiO2 enhances skeletal muscle cell phenotype and behavior

    Get PDF
    Ken Ishizaki*, Yoshihiko Sugita*, Fuminori Iwasa, Hajime Minamikawa, Takeshi Ueno, Masahiro Yamada, Takeo Suzuki, Takahiro OgawaLaboratory for Bone and Implant Sciences, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA*Authors contributed equally to this workBackground: The independent role of the surface chemistry of titanium in determining its biological properties is yet to be determined. Although titanium implants are often in contact with muscle tissue, the interaction of muscle cells with titanium is largely unknown. This study tested the hypotheses that the surface chemistry of clinically established microroughened titanium surfaces could be controllably varied by coating with a minimally thin layer of TiO2 (ideally pico-to-nanometer in thickness) without altering the existing topographical and roughness features, and that the change in superficial chemistry of titanium is effective in improving the biological properties of titanium.Methods and results: Acid-etched microroughened titanium surfaces were coated with TiO2 using slow-rate sputter deposition of molten TiO2 nanoparticles. A TiO2 coating of 300 pm to 6.3 nm increased the surface oxygen on the titanium substrates in a controllable manner, but did not alter the existing microscale architecture and roughness of the substrates. Cells derived from rat skeletal muscles showed increased attachment, spread, adhesion strength, proliferation, gene expression, and collagen production at the initial and early stage of culture on 6.3 nm thick TiO2-coated microroughened titanium surfaces compared with uncoated titanium surfaces.Conclusion: Using an exemplary slow-rate sputter deposition technique of molten TiO2 nanoparticles, this study demonstrated that titanium substrates, even with microscale roughness, can be sufficiently chemically modified to enhance their biological properties without altering the existing microscale morphology. The controllable and exclusive chemical modification technique presented in this study may open a new avenue for surface modifications of titanium-based biomaterials for better cell and tissue affinity and reaction.Keywords: nanotechnology, orthopedic implants, molten TiO2 nanoparticles, surface chemistr

    エナメル上皮腫におけるHeat Shock Protein27の発現と細胞分化

    Get PDF
    The expression of HSP27 and some CKs were examined the 40 cases of typical solid/multicystic ameloblastoma using immunohistochemical techniques. In order to examine the relevance of HSP in cell differentiation, we focused on the cytoskeletal expression of CK. CK19 is a marker of typical odontogenic epithelium widely observed in follicular and plexiform types of ameloblastomas. Since staining with CK14 is one of the measures of the differentiation potential of squamous cells and is extensively expressed in both follicular and plexiform types, it implies that squamous differentiation of each type can occur. CK8 was strongly detected in tumor nests in plexiform type but weakly detected in follicular type. It was considered that the expression of HSP27 in plexiform type correlated with the expression of CK8 suggesting that HSP27 might have regulated the expression of CK8.2013博士(歯学)松本歯科大

    多形腺腫における細胞分化の促進因子としての Wnt シグナルの可能性

    Get PDF
    There are well known that Wnt signaling was some roles of cell differentiation at the development tissues, especially the oral and maxillofacial regions of some developmental stages. Therefore, to determine Wnt signaling in the pleomorphic adenoma tissues, we examined. The expression of Wnt1 and β-catenin as well as the distribution of various cytoskeletal proteins CK7 and CK13 was examined in 30 cases of pleomorphic adenoma by immunohistochemistry. Wnt1 was detected in almost all tumor cells. The peripheral columnar cells in squamous metaplasia and small cuboidal cells in duct-like structures were strongly positive to Wnt1. Although β-catenin was clearly localized on the cell membrane of tumor cells, nuclear translocation was observed in small cuboidal cells and in some basaloid cells. The immunofluorescent staining pattern of Wnt1 and CK7 as well as Wnt1 and CK13 was consistent with IHC results. Thus, in pleomorphic adenoma, Wnt is involved in tumor cell differentiation of peripheral columnar cells forming solid nests and small peripheral columnar cells forming duct-like structures. Moreover, among the three currently known Wnt pathways, β-catenin is the suggested pathway working during cell differentiation. Furthermore, peripheral columnar cells in solid tumor nests and in squamous metaplasia are governed by another Wnt pathway other than β-catenin. Therefore, Wnt signaling through β-catenin pathway may be involved in the ‘mixed’ differentiation characteristic of pleomorphic adenoma although another pathway may also be possibly working in other parts of the tumor tissue.2014博士(歯学)松本歯科大

    多形腺腫における細胞分化因子としてのNotchの可能性

    Get PDF
    The expression of Notch in 30 cases of pleomorphic adenoma was examined by immunohistochemistry.Comparing the results of our study with previous literatures, from the partial CK7 expression and substantial Notch expression in ductal epithelial cells as well as the Notch expression in solid tumor nests, it can be inferred that Notch is involved in cell differentiation. CK13 expression was observed in cells undergoing squamous metaplasia and Notch expression was seen in the nucleus of basal and squamous cells. The intense Notch expression in basal cells and weak expression in squamous cells suggests that Notch is involved in the differentiation from basal to squamous cell. Moreover, the loss of nuclear expression on the inner layer would signify that differentiation is about to end or has been terminated. Notch was expressed in the cytoplasm of cartilage cells and in the cell membrane of mucous cells but not in the nucleus indicating that differentiation has been concluded. Notch involvement is suspected in cell differentiation in areas showing ductal structures and squamous metaplasia. In summary, Notch is involved in cell differentiation of ductal cells in PA. Nuclear expression was shown in tumor cells in solid nests and surrounding structures. Moreover, Notch is expressed by basal cells undergoing squamous metaplasia suggesting the participation of Notch in cell differentiation in PA.2015博士(歯学)松本歯科大

    A Basic Study Toward Optimization of LFC Resources in Future Power Systems

    No full text

    Prediction of 1,4-dioxane decomposition during VUV treatment by model simulation taking into account effects of coexisting inorganic ions

    Get PDF
    1,4-Dioxane is one of the most persistent organic micropollutants and is quite difficult to remove via conventional drinking water treatment consisting of coagulation, sedimentation, and sand filtration. Vacuum ultraviolet (VUV) treatment has recently been found to show promise as a treatment method for 1,4-dioxane removal, but the associated decomposition rate of 1,4-dioxane is known to be very sensitive to water quality characteristics. Some computational models have been proposed to predict the decomposition rate of micropollutants during VUV treatment, but the effects of only bicarbonate and natural organic matter have been considered in the models. In the present study, we attempted to develop a versatile computational model for predicting the behavior of 1,4-dioxane during VUV treatment that took into account the effects of other coexisting inorganic ions commonly found in natural waters. We first conducted 1,4-dioxane decomposition experiments with low-pressure mercury lamps and test waters that had been prepared by adding various inorganic ions to an aqueous phosphate buffer. The apparent decomposition rate of 1,4-dioxane was suppressed when bicarbonate, chloride, and nitrate were added to the test waters. Whereas bicarbonate and chloride directly suppressed the apparent decomposition rate by consuming HO center dot, nitrate became influential only after being transformed into nitrite by concomitant UV light (lambda= 254 nm) irradiation. Cl-related radicals (Cl center dot and Cl-2 center dot(-)) did not react with 1,4-dioxane directly. A computational model consisting of 31 ordinary differential equations with respect to time that had been translated from 84 reactions (10 photochemical and 74 chemical reactions) among 31 chemical species was then developed for predicting the behavior of 1,4-dioxane during VUV treatment. Nine of the parameters in the ordinary differential equations were determined by least squares fitting to an experimental dataset that included different concentrations of bicarbonate, chloride, nitrate, and nitrite. Without further parameter adjustments, the model successfully predicted the behavior of 1,4-dioxane during VUV treatment of three groundwaters naturally contaminated with 1,4-dioxane as well as one dechlorinated tap water sample supplemented with 1,4-dioxane

    Quantitative evaluation of Mycobacterium abscessus clinical isolate virulence using a silkworm infection model.

    No full text
    Mycobacterium abscessus causes chronic skin infections, lung diseases, and systemic or disseminated infections. Here we investigated whether the virulence of M. abscessus clinical isolates could be evaluated by calculating the median lethal dose (LD50) in a silkworm infection model. M. abscessus subsp. abscessus cells were injected into the silkworm hemolymph. When reared at 37˚C, the silkworms died within 2 days post-infection with M. abscessus subsp. abscessus. Viable cell numbers of M. abscessus increased in the hemolymph of silkworms injected with M. abscessus. Silkworms were not killed by injections with heat-killed M. abscessus cells. The administration of clarithromycin, an antibacterial drug used to treat the infection in humans, prolonged the survival time of silkworms injected with M. abscessus. The LD50 values of 7 clinical isolates in the silkworm infection model were differed by up to 9-fold. The Mb-17 isolate, which was identified as a virulent strain in the silkworm infection model, induced more detachment of human THP-1-derived macrophages during infection than the Mb-10 isolate. These findings suggest that the silkworm M. abscessus infection model can be used to quantitatively evaluate the virulence of M. abscessus clinical isolates in a short time period

    The Impact of Milk Fat Globule Membrane with Exercise on Age-Related Degeneration of Neuromuscular Junctions

    No full text
    Morphological changes in neuromuscular junctions (NMJs), which are synapses formed between α-motor neurons and skeletal muscle fibers, are considered to be important in age-related motor dysfunction. We have previously shown that the intake of dietary milk fat globule membrane (MFGM) combined with exercise attenuates age-related NMJ alterations in the early phase of aging. However, it is unclear whether the effect of MFGM with exercise on age-related NMJ alterations persists into old age, and whether intervention from old age is still effective when age-related changes in NMJs have already occurred. In this study, 6- or 18-month-old mice were treated with a 1% MFGM diet and daily running wheel exercise until 23 or 24 months of age, respectively. MFGM treatment with exercise was effective in suppressing the progression of age-related NMJ alterations in old age, and even after age-related changes in NMJs had already occurred. Moreover, the effect of MFGM intake with exercise was not restricted to NMJs but extended to the structure and function of peripheral nerves. This study demonstrates that MFGM intake with exercise may be a novel approach for improving motor function in the elderly by suppressing age-related NMJ alterations
    corecore