2,658 research outputs found

    Geometrical Pumping in Quantum Transport: Quantum Master Equation Approach

    Full text link
    For an open quantum system, we investigate the pumped current induced by a slow modulation of control parameters on the basis of the quantum master equation and full counting statistics. We find that the average and the cumulant generating function of the pumped quantity are characterized by the geometrical Berry-phase-like quantities in the parameter space, which is associated with the generator of the master equation. From our formulation, we can discuss the geometrical pumping under the control of the chemical potentials and temperatures of reservoirs. We demonstrate the formulation by spinless electrons in coupled quantum dots. We show that the geometrical pumping is prohibited for the case of non-interacting electrons if we modulate only temperatures and chemical potentials of reservoirs, while the geometrical pumping occurs in the presence of an interaction between electrons

    Diffusion in the Markovian limit of the spatio-temporal colored noise

    Full text link
    We explore the diffusion process in the non-Markovian spatio-temporal noise.%the escape rate problem in the non-Markovian spatio-temporal random noise. There is a non-trivial short memory regime, i.e., the Markovian limit characterized by a scaling relation between the spatial and temporal correlation lengths. In this regime, a Fokker-Planck equation is derived by expanding the trajectory around the systematic motion and the non-Markovian nature amounts to the systematic reduction of the potential. For a system with the potential barrier, this fact leads to the renormalization of both the barrier height and collisional prefactor in the Kramers escape rate, with the resultant rate showing a maximum at some scaling limit.Comment: 4pages,2figure

    pH-, thermo- and electrolyte-responsive polymer gels derived from a well-defined, RAFT-synthesized, poly(2-vinyl-4,4-dimethylazlactone) homopolymer via one-pot post-polymerization modification

    Get PDF
    Well-defined stimulus-responsive polymer gels were prepared from poly(2-vinyl-4,4-dimethylazlatone) (PVDMA) via one-pot post-polymerization modification. VDMA homopolymers were reacted with diamine crosslinking agents and functional 1° or 2° amines to form polymer gels that swelled in organic solvents and, in many cases, aqueous solutions. A series of functional amine reagents, including N,N-dimethylethylenediamine (DMEDA), N,N-diethylethylenediamine (DEEDA), morpholine, 3-morpholinopropylamine (MPPA) and tetrahydrofurfurylamine (THFA), were chosen as functional amines to produce polymer gels containing environmentally sensitive species. 13C solid-state NMR and FTIR spectroscopic measurements confirmed complete conversion of the reactive scaffolds. pH-dependent swelling behavior at ambient temperature was observed in DMEDA-, DEEDA- and MPPA-modified hydrogels. Kinetic studies showed the swelling behaviors of DMEDA-modified hydrogels were regulated by cross-linker type and concentration in acidic water (pH = 4) at ambient temperature. The swelling ratio of hydrogels modified by DEEDA, MPPA and THFA also depended strongly on temperature, indicating successful synthesis of thermoresponsive gels. Furthermore, the concentration of added sodium sulfate played a significant role with respect to the swelling properties of MPPA-modified hydrogels. These smart materials may be of interest in the biomedical field as well as in other applications

    Correlations of observables in chaotic states of macroscopic quantum systems

    Full text link
    We study correlations of observables in energy eigenstates of chaotic systems of a large size NN. We show that the bipartite entanglement of two subsystems is quite strong, whereas macroscopic entanglement of the total system is absent. It is also found that correlations, either quantum or classical, among less than N/2N/2 points are quite small. These results imply that chaotic states are stable. Invariance of these properties under local operations is also shown.Comment: 5 pages, 2 figure

    High power diode laser surface glazing of concrete

    Get PDF
    This present work describes the utilisation of the relatively novel high power diode laser (HPDL) to generate a surface glaze on the ordinary Portland cement (OPC) surface of concrete. The value of such an investigation would be to facilitate the hitherto impossible task of generating a durable and long-lasting surface seal on the concrete, thereby extending the life and applications base of the concrete. The basic process phenomena are investigated and the laser effects in terms of glaze morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O2 and Ar, during laser processing. HPDL glazing of OPC was successfully demonstrated with power densities as low as 750 W cm-2 and at scanning rates up to 480 mm min-1. The work showed that the generation of the surface glaze resulted in improved mechanical and chemical properties over the untreated OPC surface of concrete. Both untreated and HPDL glazed OPC were tested for pull-off strength, rupture strength, water absorption, wear resistance and corrosion resistance. The OPC laser glaze exhibited clear improvements in wear, water sorptivity, and resistance (up to 80% concentration) to nitric acid, sodium hydroxide and detergent. Life assessment testing revealed that the OPC laser glaze had an increase in actual wear life of 1.3 to 14.8 times over the untreated OPC surface of concrete, depending upon the corrosive environment

    Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using th Czech Quaternary Palynological database

    Get PDF
    International audiencetypes, PFTs) is used in the LANDCLIM project to assess the effect of human-induced land-cover change on past climate in NW Europe. Using the Czech Quaternary Pollen Database, this case study evaluates the extent to which selection of data and input parameters for the REVEALS model applications would affect reconstruction outcomes. The REVEALS estimates of PFTs (grid-cell based REVEALS PFT estimates, GB REVEALS PFT-s) are calculated for five time windows of the Holocene using fossil pollen records available in each 1°×1°grid cell of the Czech Republic. The input data and parameters selected for testing are: basin type and size, number of 14C dates used to establish the chronology of the pollen records, number of taxa, and pollen productivity estimates (PPE). We used the Spearman correlation coefficient to test the hypothesis that there is no association between GB REVEALS PFT-s using different data and parameter inputs. The results show that differences in the basin size and type, number of dates, number and type of taxa (entomophilous included or not), and PPE dataset do not affect the rank orders of the GB REVEALS PFT-s significantly, except for the cases when entomophilous taxa are included. It implies that, given careful selection of data and parameter and interpretation of results, REVEALS applications can use pollen records from lakes and bogs of different sizes together for reconstruction of past land cover at the regional to sub-continental spatial scales for purposes such as the study of past land cover-climate interactions. Our study also provides useful criteria to set up protocols for data compilation REVEALS applications of this kind

    Wehrl entropy, Lieb conjecture and entanglement monotones

    Full text link
    We propose to quantify the entanglement of pure states of N×NN \times N bipartite quantum system by defining its Husimi distribution with respect to SU(N)×SU(N)SU(N)\times SU(N) coherent states. The Wehrl entropy is minimal if and only if the pure state analyzed is separable. The excess of the Wehrl entropy is shown to be equal to the subentropy of the mixed state obtained by partial trace of the bipartite pure state. This quantity, as well as the generalized (R{\'e}nyi) subentropies, are proved to be Schur--convex, so they are entanglement monotones and may be used as alternative measures of entanglement
    corecore