25 research outputs found

    Pyrene-Modified Cyclic Peptides Detect Cu2+ Ions by Fluorescence in Water

    Get PDF
    The detection of metal ions is an option for maintaining water quality and diagnosing metal ion-related diseases. In this study, we successfully detected metal ions using fluorescent peptides in water. First, we prepared seven linear (L1-L7) and seven cyclic (C1-C7) peptides containing two pyrenyl (Pyr) units and assessed the response to various metal ions by fluorescence. The results indicated that C1, which contains a hexameric cyclic peptide moiety consisting of Pyr and Gly units, did not show a fluorescent response to metal ions, while the linear L1 corresponding to C1 showed a response to Cu2+, but its selectivity was found to be poor through a competition assay for each metal ion. We then assessed C2-C7 and L2-L7, in which Gly was replaced by His units at various positions in the same manner. The results showed that C2-C7 responded to Cu2+ in a manner dependent on the His position. Additionally, superior selectivity was observed in C7 through a competition assay. These results demonstrate that the structural restriction of peptides and the sequence affect the selective detection of Cu2+ and reveal that peptides with an appropriate structure can accomplish the fluorescent detection of Cu2+ specifically

    Millimeter-Thick Single-Walled Carbon Nanotube Forests: Hidden Role of Catalyst Support

    Full text link
    A parametric study of so-called "super growth" of single-walled carbon nanotubes(SWNTs) was done by using combinatorial libraries of iron/aluminum oxide catalysts. Millimeter-thick forests of nanotubes grew within 10 min, and those grown by using catalysts with a thin Fe layer (about 0.5 nm) were SWNTs. Although nanotube forests grew under a wide range of reaction conditions such as gas composition and temperature, the window for SWNT was narrow. Fe catalysts rapidly grew nanotubes only when supported on aluminum oxide. Aluminum oxide, which is a well-known catalyst in hydrocarbon reforming, plays an essential role in enhancing the nanotube growth rates.Comment: 11 pages, 3 figures. Jpn. J. Appl. Phys. (Express Letters) in pres

    Stable, efficient p-type doping of graphene by nitric acid

    Get PDF
    We systematically dope monolayer graphene with different concentrations of nitric acid over a range of temperatures, and analyze the variation of sheet resistance under vacuum annealing up to 300 °C.</p

    Efficient Transfer Doping of Carbon Nanotube Forests by MoO3.

    Get PDF
    We dope nanotube forests using evaporated MoO3 and observe the forest resistivity to decrease by 2 orders of magnitude, reaching values as low as ∼5 × 10(-5) Ωcm, thus approaching that of copper. Using in situ photoemission spectroscopy, we determine the minimum necessary MoO3 thickness to dope a forest and study the underlying doping mechanism. Homogenous coating and tube compaction emerge as key factors for decreasing the forest resistivity. When all nanotubes are fully coated with MoO3 and packed, conduction channels are created both inside the nanotubes and on the outside oxide layer. This is supported by density functional theory calculations, which show a shift of the Fermi energy of the nanotubes and the conversion of the oxide into a layer of metallic character. MoO3 doping removes the need for chirality control during nanotube growth and represents a step forward toward the use of forests in next-generation electronics and in power cables or conductive polymers.The authors acknowledge financial support from European project Grafol.This is the accepted manuscript. The final version is available at http://pubs.acs.org/doi/full/10.1021/acsnano.5b04644

    Co-catalytic absorption layers for controlled laser-induced chemical vapor deposition of carbon nanotubes.

    Get PDF
    The concept of co-catalytic layer structures for controlled laser-induced chemical vapor deposition of carbon nanotubes is established, in which a thin Ta support layer chemically aids the initial Fe catalyst reduction. This enables a significant reduction in laser power, preventing detrimental positive optical feedback and allowing improved growth control. Systematic study of experimental parameters combined with simple thermostatic modeling establishes general guidelines for the effective design of such catalyst/absorption layer combinations. Local growth of vertically aligned carbon nanotube forests directly on flexible polyimide substrates is demonstrated, opening up new routes for nanodevice design and fabrication.This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review. To access the final edited and published work see [insert ACS Articles on Request author-directed link to Published Work, see http://pubs.acs.org/page/policy/articlesonrequest/index.html]

    From Growth Surface to Device Interface: Preserving Metallic Fe under Monolayer Hexagonal Boron Nitride

    Get PDF
    We investigate the interfacial chemistry between Fe catalyst foils and monolayer hexagonal boron nitride (h-BN) following chemical vapour deposition and during subsequent atmospheric exposure, using scanning electron microscopy, X-ray photoemission spectroscopy, and scanning photoelectron microscopy. We show that regions of the Fe surface covered by h-BN remain in a reduced state during exposure to moist air for ~40 hours at room temperature. This protection is attributed to the strong interfacial interaction between h-BN and Fe, which prevents the rapid intercalation of oxidizing species. Local Fe oxidation is observed on bare Fe regions and close to defects in the h-BN film (e.g. domain boundaries, wrinkles, and edges), which over the longer-term provide pathways for slow bulk oxidation of the Fe. We further confirm that the interface between h-BN and reduced Fe can be recovered by vacuum annealing at ~600 °C, although this is accompanied by the creation of defects within the h-BN film. We discuss the importance of these findings in the context of integrated manufacturing and transfer-free device integration of h-BN, particularly for technologically important applications where h-BN has potential as a tunnel barrier such as magnetic tunnel junctions.S.C. and L.D. acknowledge EPSRC Doctoral Training Awards. H.S. acknowledges a research fellowship from the Japanese Society for the Promotion of Science (JSPS). S.H. acknowledges funding from ERC grant InsituNANO (no. 279342). This research was partially supported by the EUFP7 Work Programme under grant GRAFOL (project reference 285275) and EPSRC under grant GRAPHTED (project reference EP/ ACS Applied Materials & Interfaces Research Article K016636/1). R.S.W. acknowledges a Research Fellowship from St. John’s College, Cambridge, and a Marie Skłodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870) from the European Union’s Horizon 2020 research and innovation programme

    that grow vertically aligned single-walled

    No full text
    simple combinatorial method to discover Co-Mo binary catalyst
    corecore