49 research outputs found

    Natural Environment Definition for Exploration Missions

    Get PDF
    A comprehensive set of environment definitions is necessary from the beginning of the development of a spacecraft. The Cross-Program Design Specification for Natural Environments (DSNE, SLS-SPEC-159) was originally developed during the Constellation Program and then modified and matured for the Exploration Programs (Space Launch System and Orion). The DSNE includes launch, low-earth orbit (LEO), trans-lunar, cislunar, interplanetary, and entry/descent/landing environments developed from standard and custom databases and models. The space environments section will be discussed in detail

    Large Meteoroid Impact on the Moon on 17 March 2013

    Get PDF
    Since early 2006, NASA's Marshall Space Flight Center has observed over 300 impact flashes on the Moon, produced by meteoroids striking the lunar surface. On 17 March 2013 at 03:50:54.312 UTC, the brightest flash of an 8-year routine observing campaign was observed in two 0.35 m telescopes outfitted with Watec 902H2 Ultimate monochrome CCD cameras recording interleaved 30 fps video. Standard CCD photometric techniques, described in [1], were applied to the video after saturation correction, yielding a peak R magnitude of 3.0 +/- 0.4 in a 1/30 second video exposure. This corresponds to a luminous energy of 7.1 10(exp 6) J. Geographic Information System (GIS) tools were used to georeference the lunar impact imagery and yielded a crater location at 20.60 +/- 0.17deg N, 23.92 +/- 0.30deg W. The camera onboard the Lunar Reconnaissance Orbiter (LRO), a NASA spacecraft mapping the Moon from lunar orbit, discovered the fresh crater associated with this impact by comparing post-impact images from 28 July 2013 to pre-impact images on 12 Feb 2012. The images show fresh, bright ejecta around an 18 m diameter circular crater, with a 15 m inner diameter measured from the level of pre-existing terrain, at 20.7135deg N, 24.3302deg W. An asymmetrical ray pattern with both high and low reflectance ejecta zones extends 1-2 km beyond the crater, and a series of mostly low reflectance splotches can be seen within 30 km of the crater - likely due to secondary impacts [2]. The meteoroid impactor responsible for this event may have been part of a stream of large particles encountered by the Earth/Moon associated with the Virginid Meteor Complex, as evidenced by a cluster of 5 fireballs seen in Earth's atmosphere on the same night by the NASA All Sky Fireball Network [3] and the Southern Ontario Meteor Network [4]. Assuming a velocity-dependent luminous efficiency (ratio of luminous energy to kinetic energy) from [5] and an impact velocity of 25.6 km/s derived from fireball measurements, the impactor kinetic energy was 5.4 10(exp 9) J and the impactor mass was 16 kg. Assuming an impact angle of 56deg from horizontal (based on fireball orbit measurements), a regolith density of 1500 kg/m(exp 3), and impactor density between 1800 and 3000 kg/m(exp 3), the impact crater diameter was estimated to be 8-18 m at the pre-impact surface and 10-23 m rim-to-rim using the Holsapple [6] and Gault [7] models, a result consistent with the observed crater

    Lunar Meteoroid Impact Observations and the Flux of Kilogram-sized Meteoroids

    Get PDF
    Lunar impact monitoring provides useful information about the flux of meteoroids in the tens of grams to kilograms size range. The large collecting area of the night side of the lunar disk, approximately 3.4x10(exp 6) sq km in our camera field-of-view, provides statistically significant counts of the meteoroids. Nearly 200 lunar impacts have been observed by our program in roughly 3.5 years. Photometric calibration of the flashes along with the luminous efficiency (determined using meteor showers1,2,3) and assumed velocities provide their sizes. The asymmetry in the flux on the evening and morning hemispheres of the Moon is compared with sporadic and shower sources to determine their most likely origin. The asymmetry between the two hemispheres seen in Figure 1 is due to the impact rate and not to observational bias. Comparison with other measurements of the large meteoroid fluxes is consistent with these measurements as shown in Figure 2. The flux of meteoroids in this size range has important implications for the near-Earth object population and for impact risk for lunar spacecraf

    An Analytic Model for Estimating the First Contact Resistance Needed to Avoid Damaging ESD During Spacecraft Docking in GEO

    Get PDF
    NASAs Gateway program will involve spacecraft (s/c) docking in the outer radiation belt in order to transfer Gateway elements between s/c for transport to lunar orbit. The charging of these s/c to different potentials prior to docking raises the possibility of a damaging electrostatic discharge (ESD) at the time of first contact between the s/c. A proposed mitigation strategy is for first contact to occur prior to docking through a resistor with resistance R that would lower the potential difference at an optimal rate to a sufficiently low value to prevent ESD damage. The coupling of s/c by a resistor can be modeled by SPIS, but for realistic two s/c models SPIS can take hours to simulate the evolution of the s/c surface charges and potentials to an equilibrium state. Our objective is to develop a simpler model of s/c resistive coupling that runs orders of magnitude faster while providing useful first design estimates of the time variation of the s/c potentials, current through the resistor, and how these vary with R and s/c configuration This configuration is defined by the relative separation and orientation of the s/c, and their solar illumination. The configuration and geometry of the s/c determine their capacitive coupling. The s/c capacitances are computed using Nascap-2K. This poster presents the first version of such a model, and initial tests

    NASA Lunar Impact Monitoring

    Get PDF
    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in pres

    EV13 Genesis Reentry Observations and Data Analysis

    Get PDF
    The Genesis spacecraft reentry represented a unique opportunity to observe a "calibrated meteor" from northern Nevada. Knowing its speed, mass, composition, and precise trajectory made it a good subject to test some of the algorithms used to determine meteoroid mass from observed brightness. It was also a good test of an inexpensive set of cameras which could be deployed to observe future shuttle reentries. The utility of consumer grade video cameras was evident during the STS-107 accident investigation and the Genesis reentry gave us the opportunity to specify and test commercially available cameras which could be used during future reentries. This report describes the video observations and their analysis, compares the results with a simple photometric model, describes the forward scatter radar experiment, and lists lessons learned from the expedition and implications for the Stardust reentry in January 2006 as well as future shuttle reentries

    The 2012 Lyrids from Non-traditional Observing Platforms

    Get PDF
    The NASA Meteoroid Environment Office (MEO) observed meteors during the Lyrid meteor shower peak on 22 April 2012 from three different observing platforms: the ground, a helium-filled balloon, and from the International Space Station (ISS). Even though the Lyrids are not noted for spectacular rates, the combination of New Moon and a favorable viewing geometry from ISS presented a unique opportunity to simultaneously image shower meteors from above the atmosphere and below it. In the end, however, no meteors were observed simultaneously, and it was impossible to identify Lyrids with 100% confidence among the 155 meteors observed from ISS and the 31 observed from the balloon. Still, this exercise proved successful in that meteors could be observed from a simple and inexpensive balloon-based payload and from less-than-optimal cameras on ISS

    Spacecraft Charging during Docking Operations in the Outer Radiation Belt

    Get PDF
    Spacecraft charging can occur when a spacecraft vehicle is subject to space plasma environments and varying sunlit conditions. The trajectory of the spacecraft will determine the specific impinging environment while the spacecraft geometry and material properties determine the susceptibility to various charging issues. In general, spacecraft charging is separated into two categories, surface charging (~100keV)

    An Analytic Model for Estimating the First Contact Resistance Needed to Avoid Damaging ESD During Spacecraft Docking in GEO

    Get PDF
    NASAs Gateway program is to involve spacecraft (s/c) docking in the outer radiation belt in order to transfer Gateway elements between s/c for transport to lunar orbit. The charging of these s/c to different potentials prior to docking raises the possibility of a damaging electrostatic discharge (ESD) at the time of first contact between the s/c. A proposed mitigation strategy is for first contact to occur prior to docking through a resistor with resistance R that would lower the potential difference at an optimal rate to a sufficiently low value to prevent a damaging ESD. The coupling of s/c by a resistor can be modeled by SPIS (Spacecraft Plasma Interaction System), but for realistic two s/c models SPIS can take hours to simulate the evolution of the s/c surface charges and potentials to an equilibrium state. Our objective is to develop a simpler model of s/c resistive coupling that runs orders of magnitude faster while providing useful first design estimates of the time variation of the s/c potentials, current through the resistor, and how these vary with R and s/c configuration. This configuration is defined by the relative separation and orientation of the s/c, and their solar illumination. The configuration and geometry of the s/c determine their capacitive coupling. The s/c capacitances are computed using Nascap-2K. This abstract and the associated poster describe the first version of such a model, and initial tests

    Large Meteoroid Impact on the Moon 17 March 2013

    Get PDF
    NASA's routine monitoring of lunar impact flashes has recorded nearly 300 impacts since 2006. On 17 March 2013 the brightest event to date was observed in two 0.35m telescopes at the Marshall Space Flight Center. With a peak red magnitude brighter than 4.3 and an impact flash visible for over 1 second, the impact kinetic energy was equivalent to nearly 5 tons of TNT. A possible association with a meteor shower observed in the Earth's atmosphere will be described. Corresponding crater dimensions and observability of the impact crater by Lunar Reconnaissance Orbiter will also be discussed
    corecore