1,016 research outputs found

    Talking Stories: An Analysis of Haolewood\u27s Attempts to Tell Hawai\u27i\u27s Stories Through Movie Trailers

    Get PDF
    This study investigated how Native Hawaiians and Hawai\u27i are represented by the media, specifically in movies and their accompanying trailers. Thirty movie trailers from movies released between 1939 and 2016 were analyzed. These movies represented the various movie genres of romantic comedy, thriller, war, animation, drama, historical, and more. The aim of the study was to compile evidence of various themes such as stereotyping, white-washing and language pronunciation within movie trailers in order to validate or extend conceptually the theoretical framework or theory about the lack of accurate representation of Native Hawaiians. This is a feasibility study that could help set up a future study on the subject. There is extensive evidence that Native Hawaiians and Hawai\u27i are consistently stereotyped in Hollywood films and these stereotypes have damaging effects on others\u27 perceptions of Native Hawaiians. While, white-washing of Native Hawaiians is not as prevalent a phenomenon as expected because whiteness is at the core of Hollywood films. Mispronunciation of Native Hawaiian words and over-use of common words to describe Hawai\u27i contribute to the negative influences of white-washing and stereotyping on movie consumers\u27 perceptions of Hawai\u27i and Native Hawaiians

    Lattice QCD analysis for Faddeev-Popov eigenmodes in terms of gluonic momentum components in the Coulomb gauge

    Get PDF
    We analyze the relation between Faddeev-Popov eigenmodes and gluon-momentum components in the Coulomb gauge using SU(3) lattice QCD. In the Coulomb gauge, the color-Coulomb energy is largely enhanced by near-zero Faddeev-Popov eigenmodes, which would lead to the confining potential. By the ultraviolet-momentum gluon cut, the color-Coulomb energy and the Faddeev-Popov spectrum are almost unchanged. In contrast to the ultraviolet insensitivity, the color-Coulomb energy and the Faddeev-Popov eigenmodes drastically change by infrared-momentum gluon cut. Without infrared gluons, the color-Coulomb energy tends to become non-confining, and near-zero Faddeev-Popov eigenmodes vanish. We also investigate the full FP eigenmodes, and find that infrared gluons widely influence both high and low Faddeev-Popov eigenmodes.Comment: 8 pages, 5 figure

    Gluon-propagator functional form in the Landau gauge in SU(3) lattice QCD: Yukawa-type gluon propagator and anomalous gluon spectral function

    Get PDF
    We study the gluon propagator Dμνab(x)D_{\mu\nu}^{ab}(x) in the Landau gauge in SU(3) lattice QCD at β\beta = 5.7, 5.8, and 6.0 at the quenched level. The effective gluon mass is estimated as 400600400 \sim 600MeV for r(xαxα)1/2=0.51.0r \equiv (x_\alpha x_\alpha)^{1/2} = 0.5 \sim 1.0 fm. Through the functional-form analysis of Dμνab(x)D_{\mu\nu}^{ab}(x) obtained in lattice QCD, we find that the Landau-gauge gluon propagator Dμμaa(r)D_{\mu\mu}^{aa}(r) is well described by the Yukawa-type function emr/re^{-mr}/r with m600m \simeq 600MeV for r=0.11.0r = 0.1 \sim 1.0 fm in the four-dimensional Euclidean space-time. In the momentum space, the gluon propagator D~μμaa(p2)\tilde D_{\mu\mu}^{aa}(p^2) with (p2)1/2=0.53(p^2)^{1/2}= 0.5 \sim 3 GeV is found to be well approximated with a new-type propagator of (p2+m2)3/2(p^2+m^2)^{-3/2}, which corresponds to the four-dimensional Yukawa-type propagator. Associated with the Yukawa-type gluon propagator, we derive analytical expressions for the zero-spatial-momentum propagator D0(t)D_0(t), the effective mass Meff(t)M_{\rm eff}(t), and the spectral function ρ(ω)\rho(\omega) of the gluon field. The mass parameter mm turns out to be the effective gluon mass in the infrared region of \sim 1fm. As a remarkable fact, the obtained gluon spectral function ρ(ω)\rho(\omega) is almost negative-definite for ω>m\omega >m, except for a positive δ\delta-functional peak at ω=m\omega=m.Comment: 20 pages, 15 figure

    Detailed analysis of the gluonic excitation in the three-quark system in lattice QCD

    Full text link
    We study the excited-state potential and the gluonic excitation in the static three-quark (3Q) system using SU(3) lattice QCD with 163×3216^3\times 32 at β\beta=5.8 and 6.0 at the quenched level. For about 100 different patterns of spatially-fixed 3Q systems, we accurately extract the excited-state potential V3Qe.s.V_{\rm 3Q}^{\rm e.s.} together with the ground-state potential V3Qg.s.V_{\rm 3Q}^{\rm g.s.} by diagonalizing the QCD Hamiltonian in the presence of three quarks. The gluonic excitation energy ΔE3QV3Qe.s.V3Qg.s.\Delta E_{\rm 3Q} \equiv V_{\rm 3Q}^{\rm e.s.}-V_{\rm 3Q}^{\rm g.s.} is found to be about 1 GeV at the typical hadronic scale. This large gluonic-excitation energy is conjectured to give a physical reason of the success of the quark model for low-lying hadrons even without explicit gluonic modes. We investigate the functional form of ΔE3Q\Delta E_{\rm 3Q} in terms of the 3Q location. The lattice data of ΔE3Q\Delta E_{\rm 3Q} are relatively well reproduced by the ``inverse Mercedes Ansatz'' with the ``modified Y-type flux-tube length'', which indicates that the gluonic-excitation mode is realized as a complicated bulk excitation of the whole 3Q system.Comment: 13pages, 13figure

    Symmetries of hadrons after unbreaking the chiral symmetry

    Full text link
    We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the \Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.Comment: 12 pages, 14 figures; final versio

    Monopole Clustering and Color Confinement in the Multi-Instanton System

    Full text link
    We study color confinement properties of the multi-instanton system, which seems to carry an essence of the nonperturbative QCD vacuum. Here we assume that the multi-instanton system is characterized by the infrared suppression of instantons as f(ρ)ρ5f(\rho)\sim \rho^{-5} for large size ρ\rho. We first investigate a monopole-clustering appearing in the maximally abelian (MA) gauge by considering the correspondence between instantons and monopoles. In order to clarify the infrared monopole properties, we make the ``block-spin'' transformation for monopole currents. The feature of monopole trajectories changes drastically with the instanton density. At a high instanton density, there appears one very long and highly complicated monopole loop covering the entire physical vacuum. Such a global network of long-monopole loops resembles the lattice QCD result in the MA gauge. Second, we observe that the SU(2) Wilson loop obeys an area law and the static quark potential is approximately proportional to the distance RR between quark and anti-quark in the multi-instanton system using the SU(2) lattice with a total volume of V=(10fm)4V=(10 fm)^4 and a lattice spacing of a=0.05fma=0.05 fm. We extract the string tension from the 5×1065 \times 10^{6} measurements of Wilson loops. With an instanton density of (N/V)=(1/fm)4(N/V)=(1/fm)^4 and a average instanton size of ρˉ=0.4fm\bar{\rho}=0.4 fm, the multi-instanton system provides the string tension of about 0.4GeV/fm0.4 GeV/fm

    JHK' Imaging Photometry of Seyfert 1 AGNs and Quasars I: Multi-Aperture Photometry

    Full text link
    Near-infrared JHKJHK' imaging photometry was obtained of 331 AGNs consisting mainly of Seyfert 1 AGNs and quasars (QSOs). This sample was selected to cover a range of radio emission strength, redshift from z=0z=0 to 1, and absolute BB-magnitude from MB=29M_B=-29 mag to -18 mag. Among low-zz AGNs with z<0.3z<0.3, Seyfert 11.51-1.5 AGNs are distributed over a region from a location typical of ``galaxies'' to a location typical of ``QSOs'' in the two-color JHJ-H to HKH-K' diagram, but Seyfert 1.821.8-2 AGNs are distributed around the location of ``galaxies''. Moreover, bright AGNs with respect to absolute BB-magnitude are distributed near the location of ``QSOs'', while faint AGNs are near the location of ``galaxies''. The distribution of such low-zz AGNs in this diagram was found to have little dependence on their 6 cm radio flux. The near-infrared colors of the AGNs observed with an aperture of 7 pixels (7.497.49'') are more QSO-like than those observed with larger apertures up to 15 pixels (16.116.1''). This aperture effect may be explained by contamination from the light of host galaxies within larger apertures. This effect is more prominent for less luminous AGNs

    Three-Quark Potential in SU(3) Lattice QCD

    Full text link
    The static three-quark (3Q) potential is measured in the SU(3) lattice QCD with 123×2412^3 \times 24 and β=5.7\beta=5.7 at the quenched level. From the 3Q Wilson loop, the 3Q ground-state potential V3QV_{\rm 3Q} is extracted using the smearing technique for the ground-state enhancement. With accuracy better than a few %, V3QV_{\rm 3Q} is well described by a sum of a constant, the two-body Coulomb term and the three-body linear confinement term σ3QLmin\sigma_{\rm 3Q} L_{\rm min}, where LminL_{\rm min} denotes the minimal length of the color flux tube linking the three quarks. By comparing with the Q-Qˉ\bar {\rm Q} potential, we find a universal feature of the string tension, σ3QσQQˉ\sigma_{\rm 3Q} \simeq \sigma_{\rm Q \bar Q}, as well as the one-gluon-exchange result for the Coulomb coefficient, A3Q12AQQˉA_{\rm 3Q} \simeq \frac12 A_{\rm Q \bar Q}.Comment: 7 pages, 3 figur

    Exploring the inner region of Type 1 AGNs with the Keck interferometer

    Full text link
    The exploration of extragalactic objects with long-baseline interferometers in the near-infrared has been very limited. Here we report successful observations with the Keck interferometer at K-band (2.2 um) for four Type 1 AGNs, namely NGC4151, Mrk231, NGC4051, and the QSO IRAS13349+2438 at z=0.108. For the latter three objects, these are the first long-baseline interferometric measurements in the infrared. We detect high visibilities (V^2 ~ 0.8-0.9) for all the four objects, including NGC4151 for which we confirm the high V^2 level measured by Swain et al.(2003). We marginally detect a decrease of V^2 with increasing baseline lengths for NGC4151, although over a very limited range, where the decrease and absolute V^2 are well fitted with a ring model of radius 0.45+/-0.04 mas (0.039+/-0.003 pc). Strikingly, this matches independent radius measurements from optical--infrared reverberations that are thought to be probing the dust sublimation radius. We also show that the effective radius of the other objects, obtained from the same ring model, is either roughly equal to or slightly larger than the reverberation radius as a function of AGN luminosity. This suggests that we are indeed partially resolving the dust sublimation region. The ratio of the effective ring radius to the reverberation radius might also give us an approximate probe for the radial structure of the inner accreting material in each object. This should be scrutinized with further observations.Comment: accepted for publication in A&A Letter

    Off-diagonal Gluon Mass Generation and Infrared Abelian Dominance in the Maximally Abelian Gauge in Lattice QCD

    Full text link
    We study effective mass generation of off-diagonal gluons and infrared abelian dominance in the maximally abelian (MA) gauge. Using the SU(2) lattice QCD, we investigate the propagator and the effective mass of the gluon field in the MA gauge with the U(1)3_3 Landau gauge fixing. The Monte Carlo simulation is performed on the 123×2412^3 \times 24 lattice with 2.2β2.42.2 \le \beta \le 2.4, and also on the 16416^4 and 20420^4 lattices with 2.3β2.42.3 \le \beta \le 2.4. In the MA gauge, the diagonal gluon component Aμ3A_\mu^3 shows long-range propagation, and infrared abelian dominance is found for the gluon propagator. In the MA gauge, the off-diagonal gluon component Aμ±A_\mu^\pm behaves as a massive vector boson with the effective mass Moff1.2M_{\rm off} \simeq 1.2 GeV in the region of r \gsim 0.2 fm, and its propagation is limited within short range. We conjecture that infrared abelian dominance can be interpreted as infrared inactivity of the off-diagonal gluon due to its large mass generation induced by the MA gauge fixing.Comment: 31 pages, 7 figures and 2 tables included, changed title, corrected typos and updated reference, accepted for publication in Physical Review
    corecore