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We analyze the relation between Faddeev-Popov eigenmodes and gluon-momentum components in the

Coulomb gauge using SU(3) lattice QCD. In the Coulomb gauge, the color-Coulomb energy is largely

enhanced by near-zero Faddeev-Popov eigenmodes, which would lead to the confining potential. By the

ultraviolet-momentum gluon cut, the color-Coulomb energy and the Faddeev-Popov spectrum are almost

unchanged. In contrast to the ultraviolet insensitivity, the color-Coulomb energy and the Faddeev-Popov

eigenmodes drastically change by infrared-momentum gluon cut. Without infrared gluons, the color-

Coulomb energy tends to become nonconfining, and near-zero Faddeev-Popov eigenmodes vanish. We

also investigate the full Faddeev-Popov eigenmodes, and find that infrared gluons widely influence both

high and low Faddeev-Popov eigenmodes.

DOI: 10.1103/PhysRevD.86.074034 PACS numbers: 12.38.Aw, 12.38.Gc, 14.70.Dj

I. INTRODUCTION

The Coulomb gauge is one of the most popular gauges in
Quantum Chromodynamics (QCD). In addition to the con-
venient choice for calculations, the Coulomb-gauge QCD
is also interesting from the theoretical point of view, espe-
cially in the context of the canonical quantization [1]. In
addition, color confinement has been investigated in the
Coulomb gauge in terms of the color-Coulomb interaction
[2–16]. As a new picture of hadrons, the gluon-chain
picture also stems from the Coulomb-gauge QCD [17–19].

In the Coulomb-gauge QCD, the Faddeev-Popov (FP)
operator is the important key quantity. Actually, the color-
Coulomb energy is enhanced by the near-zero FP eigen-
modes, which would lead to the confining force between
color charges. This confinement scenario is known as
the Gribov-Zwanziger scenario [2,3]. From lattice-QCD
numerical calculations, the color-Coulomb energy cer-
tainly gives a linear interquark potential [4–14].

The confinement is also characterized by the infinite
self-energy of an isolated color-charge. In the Coulomb
gauge, the color-Coulomb self-energy is expressed in
terms of the FP eigenmodes, and its divergence is origi-
nated from near-zero FP eigenmodes, as was shown in
lattice QCD calculations [10,12].

Then, it is meaningful to investigate the FP eigen-
modes for the understanding of nonperturbative QCD
[10,12,20,21]. In this paper, we investigate the FP eigen-
modes in terms of the gluon-momentum components.
Since the QCD interactions are mediated by gluons, the
FP eigenmodes should reflect the properties of the gluon.
To analyze the correspondence between the gluon field and
the FP eigenmodes, we decompose the link-variables in

terms of momentum components, and remove infrared or
ultraviolet momentum modes in lattice QCD [22].
The organization of this paper is as follows. In Sec. II,

we review the color-Coulomb energy and properties of
the FP eigenmodes in the Coulomb gauge. We also
introduce the gluon-momentum cut method in lattice
QCD. In Sec. III, we show the lattice QCD results for the
color-Coulomb energy and the FP eigenmodes with the
IR/UV-momentum gluon cut. Section IV will be devoted to
summary and discussions.

II. FORMALISM

In this section, we review the color-Coulomb energy and
the FP operator properties in the Coulomb gauge [4,9,10].
We also briefly introduce the gluon-momentum cut method
in lattice QCD. Since we discuss the Coulomb-gauge QCD
at a fixed timeslice t, we will omit the time coordinate t in
this paper.

A. Color-Coulomb energy and confinement scenario
in the Coulomb gauge

The Coulomb gauge is one of the most popular gauges in
both analytic framework and lattice QCD calculation. The
definition of the Coulomb gauge is given by

@iAi ¼ 0; (1)

where the gluon fields A�ð ~xÞ � Aa
�ð ~xÞTa 2 suðNcÞ with

generator Ta (a ¼ 1; 2; . . . ; N2
c � 1). The Coulomb gauge

is also defined by the minimization of the global quantity

RCoul �
Z

d3 ~xTrfAið ~xÞAið ~xÞg; (2)

by the gauge transformation. The minimization of the
quantity RCoul means that the spatial gauge-field fluctua-
tions are maximally suppressed in the Coulomb gauge.

*iritani@ruby.scphys.kyoto-u.ac.jp
†suganuma@ruby.scphys.kyoto-u.ac.jp

PHYSICAL REVIEW D 86, 074034 (2012)

1550-7998=2012=86(7)=074034(9) 074034-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.074034


These gauge-fixing conditions resemble the Landau-
gauge condition, although the Lorentz covariance is
partially broken. In the Coulomb gauge, gluon fields

are decomposed into the canonical variable ~A and the
potential A0 [23].

One of the advantages in the Coulomb gauge is the
compatibility with the canonical quantization [1]. In the
Coulomb gauge, the QCD Hamiltonian is expressed with

color electric and magnetic fields, ~Ea and ~Ba, as

H ¼ 1

2

Z
d3 ~xð ~Ea � ~Ea þ ~Ba � ~BaÞ

þ 1

2

Z
d3 ~xd3 ~y�að ~xÞKabð ~x; ~yÞ�bð ~yÞ; (3)

where �að ~xÞ is the color-charge density, and Kabð ~x; ~yÞ the
instantaneous Coulomb propagator. Kabð ~x; ~yÞ is defined as

Kabð ~x; ~yÞ ¼
h
M�1

FP ð�r2ÞM�1
FP

i
ab

~x ~y
; (4)

using the FP operator

Mac
FP ¼ �r2�ac � "abcAb

i @i; (5)

with r2 ¼ @2i . The second term of the Hamiltonian (3)
corresponds to the color-Coulomb energy, which is ex-
pressed as

VCoulðRÞ ¼ �g2
CF

N2
c � 1

h½M�1
FP ð�r2ÞM�1

FP �aa~x ~yi; (6)

with R ¼ j ~x� ~yj, the quadratic Casimir CF ¼ N2
c�1
2Nc

of

the fundamental representation, and the coupling constant
g [4,9,10].

In the Abelian gauge theory, the FP operator becomes
the Laplacian, and the instantaneous Coulomb propagator
is inverse of the Laplacian. Thus, the Coulomb energy
becomes familiar Coulomb potential form VðRÞ / 1=R.
In the non-Abelian gauge theory, the FP operator has non-
trivial zero-modes, which form the Gribov horizon [2]. In
the neighborhood of the Gribov horizon, the color-
Coulomb energy is largely enhanced, which is conjectured
to contribute to the confining force. This confinement
picture is known as the Gribov-Zwanziger scenario [2,3].

Instead of the direct definition of the color-Coulomb
energy VCoulðRÞ in Eq. (6), we consider the correlator of
the timelike Wilson lines as

GðR; TÞ � 1

Nc

hTr½Lð ~x; TÞLyð ~y; TÞ�i; (7)

with R ¼ j ~x� ~yj and the timelike Wilson line

Lð ~x; TÞ � P exp

�
i
Z T

0
dtA4ð ~x; tÞ

�
: (8)

As for the relation to the color-Coulomb energy, one
finds [4,24]

� d

dT
lnGðR; TÞjT!0 ¼ VCoulðRÞ þ const: (9)

In lattice QCD, the QCD action is constructed from the

link-variable U�ð ~xÞ, which is defined as U�ð ~xÞ ¼ eiagA�ð ~xÞ

with the lattice spacing a and the gauge coupling constant
g [25]. The Coulomb-gauge fixing condition is expressed
in terms of the link-variable, and is given by the max-
imization of

R½U� � X
~x

X3
i¼1

Re TrUið ~xÞ; (10)

by the gauge transformation

Uið ~xÞ ! �ð ~xÞUið ~xÞ�yð ~xþ î Þ; (11)

with �ð ~xÞ 2 SUðNcÞ. In the continuum limit a ! 0, this
condition results in the minimization of Eq. (2). Using the
time-like Wilson line correlator GðR; TÞ on lattice, we
define VðR; TÞ as

VðR; TÞ � 1

a
ln

�
GðR; TÞ

GðR; T þ aÞ
�
: (12)

Especially, at T ¼ 0, we call

VinstðRÞ � � 1

a
lnhTrfU4ð ~xÞUy

4 ð ~yÞgi; (13)

as instantaneous potential [23], which is considered to be
closely related to the color-Coulomb energy in Eq. (6).
Actually, in the continuum limit, the instantaneous poten-
tial would coincide with the color-Coulomb energy as in
Eq. (9) [4,9]. The lattice QCD calculations show that the
instantaneous potential gives a linear rising potential [4,9],
and satisfies the Casimir scaling [11] similar to the physical
interquark potential [26]. However, the slope of the
potential is 2–3 times larger than physical string tension
�phys ’ 0:89 GeV=fm [4,9].

The color-Coulomb energy is directly calculated
based on Eq. (6) in both SU(2) [6,8] and SU(3) [13] lattice
QCD. These lattice QCD calculations also indicate the
overconfining potential with a larger string tension.
Actually, the color-Coulomb energy gives an upper

bound on the static interquark potential VphysðRÞ,
VphysðRÞ � VCoulðRÞ; (14)

which was shown by Zwanziger [3]. This large color-
Coulomb energy is considered as the overconfining
state, and the gluon-chain picture is proposed for the true
ground state of the quark-antiquark system in the Coulomb
gauge [4,17,19].
In spite of overconfining, the color-Coulomb energy is

expected to relate to the confinement at least at zero
temperature. Therefore, we concentrate on the color-
Coulomb energy properties in this paper.
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B. Faddeev-Popov eigenmodes
and color-Coulomb energy

In the Coulomb-gauge lattice QCD, the FP operator is
given by

MFPða; ~x; b; ~yÞ �
X3
i¼1

Re Tr½fTa; TbgðUið ~xÞ

þUið ~x� îÞÞ�~x; ~y � 2TbTaUið ~xÞ�~xþî; ~y

� 2TaTbUið ~x� îÞ�~x�î; ~y�; (15)

using the generators Ta and link-variable U�ð ~xÞ. On

L3 � Lt lattice, the total number of FP eigenmodes is
V3 � ðN2

c � 1Þ with the spatial volume V3 ¼ L3. The FP
operator MFPða; ~x; b; ~yÞ has trivial (N2

c � 1) zero-modes

c a
nð ~xÞ � 1ffiffiffiffiffiffi

V3

p �an; (16)

with a ¼ 1; 2; . . . ; ðN2
c � 1Þ.

In free-field and QED cases, the FP operator becomes
the Laplacian, and the eigenvalues are expressed by the
three-dimensional momentum pi. In the lattice theory, the
eigenvalue is given by

� ¼ X3
i¼1

�
2

a
sin

�
pia

2

��
2
; (17)

with pi 2 ð��=a;�=a�. In the continuum limit, it
becomes

�ðcontÞ ¼ X3
i¼1

p2
i ¼ ~p2: (18)

In terms of the FP eigenfunction, the relation between
the color-Coulomb energy and the Gribov horizon
becomes clear. Considering the FP eigenstate j�ni which
satisfies

MFPj�ni ¼ �nj�ni; (19)

with eigenvalue �n 2 R, and the FP eigenfunction is
given by

c a
nð ~xÞ � h ~x; aj�ni; (20)

where a is the color index. Using the FP eigenmodes, the
color-Coulomb energy in Eq. (6) is expressed as

VCoulðRÞ ¼ �g2
CF

N2
c � 1

X
n;m

c a
nð ~xÞc a�

m ð ~yÞ h�nj � r2j�mi
�n�m

;

(21)

with R ¼ j ~x� ~yj [10]. Equation (21) indicates that low-
lying FP eigenmodes would give dominant contribution to
the color-Coulomb energy. From lattice QCD calculations,
the color-Coulomb energy is brought by only small number
of low-lying FP eigenmodes [13].

The confinement is also investigated in terms of the
color-Coulomb self-energy, since an isolated color-charge
has infinite energy in the infrared in QCD. Using the
FP eigenmodes, the color-Coulomb self-energy [10] is
expressed as

EF ¼ g2CF

N2
c � 1

hKaað ~x; ~xÞi

¼ g2CF

N2
c � 1

1

V3

X
n

h�nj � r2j�ni
�2
n

¼ g2CF

N2
c � 1

1

V3

X
n

Fð�nÞ
�2
n

: (22)

Fð�nÞ is the diagonal-matrix element of the Laplacian
operator:

Fð�nÞ � h�nj � r2j�ni

¼ X
~x; ~y

X3
i¼1

c a�
n ð ~xÞ½2�~x; ~y � �~xþî; ~y � �~x�î; ~y�c a

nð ~yÞ:

(23)

Here, we define the eigenmode density �ð�Þ as

�ð�Þ � 1

ðN2
c � 1ÞV3

1

��
Nð�; �þ��Þ; (24)

where Nð�; �þ ��Þ is the number of eigenvalues in
½�; �þ���. In the infinite-volume limit, color-Coulomb
self-energy EF [10] is expressed as

E F ¼ g2CF

Z �max

0

d�

�2
�ð�ÞFð�Þ; (25)

with the FP-eigenmode density �ð�Þ, and the UV cutoff
�max. Therefore, if the criterion

lim
�!0

�ð�ÞFð�Þ
�

> 0 (26)

is satisfied, color-Coulomb self-energy EF diverges in the
infrared limit [10]. This criterion indicates the importance of
the near-zero FP modes and matrix elements Fð�Þ for
confinement, which is similar to the Dirac zero-mode and
chiral symmetry breaking in the Banks-Casher relation [27].
In free-field and QED cases, the FP eigenvalue is given

by Eq. (18), and then �ð�Þ and Fð�Þ behave as
�ð�Þ � �1=2; Fð�Þ � �: (27)

Therefore, the confinement criterion is not satisfied as

lim
�!0

�ð�ÞFð�Þ
�

¼ 0; (28)

and the Coulomb self-energy is infrared finite.
Since the color-charge is confined in QCD, color-

Coulomb self-energy is expected to diverge at infrared
limit. From SU(2) lattice-QCD analysis, the FP spectrum
�ð�Þ and the matrix element Fð�Þ approximately behave as
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�ð�Þ � �0:25; Fð�Þ � �0:38; (29)

near the horizon �� 0 [10]. Then the divergence criterion
is satisfied as

lim
�!0

�ð�ÞFð�Þ
�

� lim
�!0

��0:37 ¼ 1: (30)

Therefore, the color-Coulomb self-energy actually di-
verges in the infrared limit and the color-charge is confined
in the non-Abelian case.

C. Gluon-momentum cut method

In this subsection, we introduce the formalism to remove
gluon-momentum modes in lattice QCD, which proposed
in Ref. [22]. Here, we use the Coulomb gauge, and carry
out the three-dimensional Fourier transformation with
respect to the spatial coordinate ~x at fixed timeslice t.

The procedure is as follows.
(1) We generate the link-variable U�ðxÞ 2 SUðNcÞ on

L3 � Lt lattice with lattice spacing a, and fix the
Coulomb gauge.

(2) We carry out the discrete Fourier transformation.
The momentum-space link-variable is given by

~U�ð ~pÞ � 1

V3

X
~x

U�ð ~xÞ exp
�
i
X3
i¼1

pixi

�
; (31)

with the spatial volume V3 ¼ L3, and momentum
pi 2 ð��=a;�=a�. In the momentum space, the
lattice spacing ap is given by

ap � 2�

La
: (32)

(3) We introduce infrared and ultraviolet cut �IRðUVÞ 2
ð��=a;�=a�, and replace the link-variable by the
free-field link-variable as

~U�
�ð ~pÞ �

8<
:

~U�ð ~pÞ �2
IR � p2

i � �2
UV

~Ufree
� ð ~pÞ p2

i <�2
IR or �2

UV <p2
i

:

(33)

The Fourier transformation of the free-field link-
variable U�ð ~xÞ ¼ 1 is

~Ufree
� ð ~pÞ � 1

V3

X
~x

1 � exp
�
i
X3
i¼1

pixi

�
¼ � ~p ~01: (34)

(4) In order to return to the coordinate space variable,
we carry out the inverse Fourier transformation of
~U�
�ð ~pÞ as

U0�
� ð ~xÞ � X

~p

~U�
�ð ~pÞ exp

�
�i

X3
i¼1

pixi

�
: (35)

Since this link-variable U0�
� ð ~xÞ is not SUðNcÞ

matrix, we project it onto SUðNcÞ matrix U�
�ðxÞ by

maximizing

Re Tr½U0�
� ð ~xÞU�y

� ð ~xÞ�; (36)

which is often used in lattice QCD algorithm.
Finally, we obtain the momentum projected link-
variable U�

�ð ~xÞ 2 SUðNcÞ.

III. LATTICE QCD CALCULATION

In this section, we analyze the instantaneous potential,
the FP eigenmodes, and the color-Coulomb energy, in
terms of the gluonic momentum using SU(3) lattice
Monte Carlo calculations. We mainly use 164 lattice at
� � 2Nc=g

2 ¼ 5:8, which corresponds to the lattice spac-
ing a ’ 0:15 fm [28], and ap � 2�=La ’ 0:50 GeV in the

momentum space. We use the jack-knife method for the
estimating of the statistical error.

A. Instantaneous potential with IR/UV gluon cut

First, we analyze the instantaneous potential with the
IR/UV-momentum gluon cut. Using U�

�ð ~xÞ, we define the

instantaneous potential with gluon-momentum cut as

V�
instðRÞ � � 1

a
lnhTrfU�

4 ð ~xÞU�y
4 ð ~yÞgi; (37)

with R ¼ j ~x� ~yj. Figures 1(a) and 1(b) are V�
instðRÞ with

the IR/UV-momentum cut, respectively. We also show
original (no momentum cut) instantaneous potential, and
fit result using Coulomb plus linear form. The best fit value
of the slope is �Coul=�phys ’ 2:6.

As shown in Fig. 1(a), the instantaneous potential be-
comes non-confining with IR-momentum cut. The instan-
taneous potential changes drastically even for the smallest
IR-cut. In contrast to the IR-cut, the instantaneous potential
is almost unchanged by the UV-cut as shown in Fig. 1(b).

B. FP eigenmodes with IR/UV gluon cut

Next, we analyze the FP eigenmodes with the IR/UV-
momentum gluon cut. The instantaneous potential be-
comes non-confining with the IR-cut. Similar to the
color-Coulomb energy, the instantaneous potential would
be closely related to the FP eigenmodes, we expect that the
FP eigenmodes are largely changed with the IR-cut.

1. Low-lying FP eigenmodes

First, we evaluate the low-lying 250 FP eigenmodes
using ARPACK [29]. In this case, the total number of FP
eigenmodes is V3 � ðN2

c � 1Þ ¼ 163 � 8 ¼ 32768.
Figures 2(a) and 2(b) are the low-lying FP spectrum

�ð�Þ with the IR/UV-momentum gluon cut, respectively.
In both figures, we have added the original FP spectrum for
comparison, and we have omitted the trivial 8 zero-modes
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in Eq. (16), which always remain even after momentum
cut procedure. In Fig. 2(a), the vertical bars denote the
free-field eigenvalues � ¼ 4sin2ð�=16Þa�2 ’ 0:15a�2 and
� ¼ 8sin2ð�=16Þa�2 ’ 0:30a�2.

As shown in Fig. 2(a), the IR-cut FP spectrum is dras-
tically changed. The near-zero FP modes vanish, and the
spectrum changes into multi-peak structure from original
smooth one. By increasing the IR-cut �IR, the peaks of the
spectrum become sharper, and the FP spectrum tends to
converge into �-functional peaks in the free-field limit as
Eq. (17). On the other hand, the FP spectrum is almost
unchanged for the UV-cut. This UV-cut insensitivity is the
same as the instantaneous potential as shown in Fig. 1(b).

2. Matrix element of the Laplacian operator

Next, we analyze the matrix element of the Laplacian
operator, i.e., h�1j � r2j�2i, which is important for both
color-Coulomb energy in Eq. (21) and self-energy diver-
gence condition (26). Here, we mainly discuss the diagonal

component Fð�Þ � h�j � r2j�i, since the off-diagonal
elements h�1j � r2j�2i are found to be almost the zero
from lattice QCD calculations.
Figure 3 is the scatter plot of the diagonal element Fð�Þ

with the IR/UV-momentum cut, for low-lying 250
eigenmodes. We also show the original Fð�Þ without
momentum cut, and omit the trivial 8 zero-modes in this
figure. In Fig. 3(a) the solid-box symbols denote the
free-field values � ¼ 4sin2ð�=16Þa�2 ’ 0:15a�2 and � ¼
8sin2ð�=16Þa�2 ’ 0:30a�2 in this 164 lattice, and the
solid line denotes free-field value Fð�Þ ¼ � in the contin-
uum theory.
By the IR-momentum cut, near-zero modes of Fð�Þ

vanish as in the IR-cut FP spectrum. Fð�Þ changes into
band-like structure from original smooth distribution, and
tends to converge into free-field value on lattice. In Fig. 3,
one finds a flow of eigenmodes into free-field limit by the
IR-momentum cut. Since both matrix element Fð�Þ and FP
spectrum �ð�Þ converge to free-field limit, the self-energy
divergence condition (26) would not be satisfied by the
IR-cut. Actually, the instantaneous potential becomes

 0
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FIG. 2 (color online). Low-lying 250 FP spectrum �ð�Þ with
the IR/UV momentum cut and original spectrum for 164 lattice
with a ’ 0:15 fm, i.e., ap � 2�=La ’ 0:50 GeV. The binwidth

is taken as �� ¼ 0:005a�2. (a) IR-momentum cut with
�IR=ap ¼ 1, 2, and 3. The vertical bars denote the nonzero

free-field spectrum. (b) UV-momentum cut with �UV=ap ¼ 12

and 8.
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FIG. 1 (color online). The instantaneous potential V�
instðRÞ with

the IR/UV-momentum gluon cut for 164 lattice with a ’
0:15 fm, i.e., ap � 2�=La ’ 0:50 GeV. The original (no

momentum cut) instantaneous potential is added with the fitting
curve of Coulomb plus linear form. The statistical error is small
and the error bars are hidden in the symbols. (a) IR-momentum
cut with �IR=ap ¼ 1 and 2. (b) UV-momentum cut with

�UV=ap ¼ 12 and 8. An irrelevant constant is shifted.
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non-confining as shown in Fig. 1(a). On the other hand,
Fð�Þ is almost unchanged by the UV-momentum cut like
the FP spectrum.

3. Full FP eigenmodes

As shown above, the low-lying FP eigenmodes are largely
changed by the IR-momentum cut. Therefore, one may
expect naively that low/high FP eigenmodes are closely
related to the IR/UV-momentum gluon, respectively.

To investigate correspondence between gluonic momen-
tum and the FP spectrum, it is meaningful to calculate full
FP eigenmodes. However, it requires huge computational
costs to perform full diagonalization of the FP operator
for large volume lattices. Here, we adopt 84 lattice with
� ¼ 5:6, which corresponds to the lattice spacing a ’
0:25 fm and ap ’ 0:62 GeV [30,31]. The total number of

the FP eigenmodes is V3 � ðN2
c � 1Þ ¼ 83 � 8 ¼ 4096.

We evaluate the full FP eigenmodes using LAPACK [32].
We have confirmed that the instantaneous potential and
momentum cut dependence in this 84 lattice, and find that

qualitatively the same results are obtained in 164 lattice
with � ¼ 5:8. Therefore, full-modes analysis is workable
in this 84 lattice.
Figures 4 and 5 are the full FP spectrum with the IR/UV

momentum cut, respectively. The solid curve denotes origi-
nal FP spectrum in Figs. 4 and 5 and Fig. 4(d) is free-field
spectrum in this lattice size. For the IR-cut, the FP spec-
trum is drastically changed from smooth one to multi-peak
structure in the whole eigenvalue region. It is notable that
both low and high FP eigenmodes are affected by the low
momentum gluon. The IR-cut spectrum clearly approaches
to free-field spectrum, which is given by Eq. (17). In
contrast, the FP spectrum is almost unchanged for
UV-cut as shown in Fig. 5.
Therefore, there are no direct correspondence between

the IR/UV gluonic momentum and low/high FP eigen-
modes, respectively. Figures 4 and 5 indicate that the
smooth structure of FP eigenmodes mainly originate
from the low-momentum gluon.
As a caution, the UV-cut spectrum in Fig. 5 seems

to resemble the IR-cut one at �IR=ap ¼ 1 as shown in

Fig. 4(a). However, as we discussed the low-lying FP eigen-
modes, the near-zero modes vanish in the IR-cut, which
differs from the UV-cut spectrum. The near-zero eigen-
modes are relevant for color-Coulomb energy, such a small
difference of low-lying spectrum can affect on the confining
property of the color-Coulomb energy.

C. Color-Coulomb energy from FP eigenmodes

In Sec. III A, we investigate the instantaneous potential
instead of the color-Coulomb energy. In this subsection, we
directly analyze the color-Coulomb energy in Eq. (21)
using the FP eigenmodes [13], which are evaluated in
Sec. III B.
Figure 6 shows the color-Coulomb energy with IR/UV-

momentum cut using low-lying 50 FP eigenmodes apart
from trivial 8 zero-modes. For comparison, we add the
original (no momentum cut) color-Coulomb energy, and
the instantaneous potential with the fitting curve of
Coulomb plus linear form. Here, the color-Coulomb
energy is calculated directly with Eq. (21).
As shown in Figs. 1 and 6 the instantaneous potential

and the color-Coulomb energy exhibit the similar
momentum-cut dependence. The UV-cut color-Coulomb
energy is almost the same as the original one, and the
IR-cut energy becomes nonconfining.

D. Comparison with center-vortex removal

In this paper, we have investigated the instantaneous
potential and FP eigenmodes in terms of gluon-momentum
components. In the context of the confinement mechanism,
there is an interesting similarity between our results on the
IR-momentum gluon cut and those on the center-vortex
removal [4], and then we compare these two different
operations including their results in this subsection.
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FIG. 3 (color online). The scatter plot of the diagonal matrix
element Fð�Þ � h�j � r2j�i with the IR/UV momentum cut,
and original matrix element, for 164 lattice with a ’ 0:15 fm,
i.e., ap � 2�=La ’ 0:50 GeV. (a) IR-momentum cut with

�IR=ap ¼ 1, 2, and 3. The solid-box symbols denote for non-

zero free-field values, and the solid line for free-field value in
continuum limit, i.e., Fð�Þ ¼ �. (b) UV-momentum cut with
�UV=ap ¼ 12 and 8.
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The center vortex is an interesting object appearing in the
maximal center (MC) gauge [33], and closely relates to the
confinement [4] and the infrared properties of QCD [34,35].
Actually, when the center vortex is removed from the QCD
vacuum, the string tension obtained from the Wilson loop
vanishes and the system becomes nonconfining [36], which
is observed in the IR-momentum cut of gluons [22].
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FIG. 5 (color online). The full FP spectrum �ð�Þ with the UV-
momentum cut at�UV=ap ¼ 4 for 84 lattice at � ¼ 5:6, i.e., a ’
0:25 fm and ap � 2�=La ’ 0:62 GeV. The binwidth is taken as

�� ¼ 0:1a�2. The solid curve denotes original spectrum.
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FIG. 4 (color online). The full FP spectrum �ð�Þ with the IR-momentum cut for 84 lattice at � ¼ 5:6, i.e., a ’ 0:25 fm and
ap � 2�=La ’ 0:62 GeV. The binwidth is taken as �� ¼ 0:1a�2. The solid curve denotes original spectrum. (a) IR-momentum cut

with �IR=ap ¼ 1, (b) �IR=ap ¼ 2, (c) �IR=ap ¼ 3, (d) free field spectrum with rescaled by 1=10.
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obtained with Eq. (21) using low-lying 50 FP eigenmodes apart
from trivial zero-modes. For 164 lattice at � ¼ 5:8, i.e.,
a ’ 0:15 fm and ap � 2�=La ’ 0:50 GeV, we show the IR-
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parison, the instantaneous potential is also added with the fitting
curve of Coulomb plus linear form. An irrelevant constant is
shifted.
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Also, as Greensite and Olejnı́k pointed out, by removing
the center vortex in the MC gauge, the instantaneous
potential in the Coulomb gauge becomes non-confining
[4], which resembles the IR-cut of gluons, as shown in
Fig. 1(a). Since the instantaneous potential is closely
related to the color-Coulomb energy, the non-confining
instantaneous potential reflects the change of the near-
zero FP eigenmodes. In the center-vortex removal, the
FP spectrum becomes multi-peaks, and matrix element
h�j � r2j�i becomes band-like structure [10]. These
changes are quite similar to those of the IR-momentum
cut of gluons, as shown in Figs. 2(a), 3(a), and 4(a)–4(c). In
fact, both operations lead to the similar drastic change of
FP eigenmodes. In the center-vortex removal, however, the
FP spectrum does not coincide with the �-functional form
of the free-field case, but becomes multi-peaks with a finite
width. Then, there still remains the significant difference
between no-vortex link-variables and free-field variables.

In the gluon-momentum cut method, one can continu-
ously change the link-variable to free-field one, and
accordingly, the FP spectrum continuously goes from a
smooth function to the �-functional form. In fact, unlike
the center-vortex removal, our operation is continuous.
In the momentum-cut method, according to the IR cut, we
observe a flow of the matrix element Fð�Þ, which continu-
ously goes to the free-field limit, as shown in Fig. 3(a).

From the similarity between these two different opera-
tions, it is also interesting to investigate the correspon-
dence between the center vortex in the MC gauge and
the gluon-momentum components in the Landau/
Coulomb gauge.

IV. SUMMARYAND DISCUSSION

In this paper, we have investigated the relation between
the FP eigenmodes and gluon-momentum components in
the Coulomb gauge using SU(3) lattice QCD calculations
at the quenched level. The FP eigenmodes are considered
to be important for confinement scenario in the Coulomb
gauge. Especially, the low-lying eigenmodes lead the large
color-Coulomb energy, and the color-Coulomb self-energy
diverges from the enhancement of the near-zero eigenmode
density. We have analyzed low-lying FP eigenmodes with

the IR/UV-momentum gluon cut, and also performed the
full FP eigenmodes analysis.
In the UV-momentum gluon cut, both color-Coulomb

energy and FP eigenmodes are almost unchanged, which
indicates that high-momentum gluons are irrelevant for
confining scenario in the Coulomb gauge. In contrast, the
color-Coulomb energy becomes nonconfining, and the FP
eigenmodes are drastically changed by the IR-momentum
cut. In the IR-momentum gluon cut, the FP spectrum
changes from original smooth one to the multi-peaks,
which converges into free-field limit. We also note that
the changes of the FP spectrum occurs in the whole eigen-
value region by low-momentum gluon cut. These results
indicate the importance of the IR-momentum gluon for
nontrivial structure of the FP eigenmodes.
We comment on change of the FP eigenmodes in the

continuum limit. By the IR-momentum cut, the FP spec-
trum becomes the comb-like shapes, since the spectrum
converges into the discrete free-field one on lattice.
However, in the continuum limit, the FP spectrum changes

into smooth free-field form �ð�Þ � �1=2 from near-zero
enhanced spectrum in QCD. Therefore, by the IR-
momentum cut, the modification of the spectrum would
be smaller in the continuum theory than the discrete case as
shown in Fig. 4.
In this paper, we have investigated the FP eigenmodes

in terms of the gluon-momentum components. It is also
interesting to investigate QCD properties in terms of the FP
eigenmode, since the FP eigenmodes are considered to be
important for confinement in the Coulomb gauge.
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