2 research outputs found
Development of a Design Methodology for Hydraulic Pipelines Carrying Rectangular Capsules
The scarcity of fossil fuels is affecting the efficiency of established modes of cargo transport within the transportation industry. Efforts have been made to develop innovative modes of transport that can be adopted for economic and environmental friendly operating systems. Solid material, for instance, can be packed in rectangular containers (commonly known as capsules), which can then be transported in different concentrations very effectively using the fluid energy in pipelines. For economical and efficient design of such systems, both the local flow characteristics and the global performance parameters need to be carefully investigated. Published literature is severely limited in establishing the effects of local flow features on system characteristics of Hydraulic Capsule Pipelines (HCPs). The present study focuses on using a well validated Computational Fluid Dynamics (CFD) tool to numerically simulate the solid-liquid mixture flow in both on-shore and off-shore HCPs applications including bends. Discrete Phase Modelling (DPM) has been employed to calculate the velocity of the rectangular capsules. Numerical predictions have been used to develop novel semi-empirical prediction models for pressure drop in HCPs, which have then been embedded into a robust and user-friendly pipeline optimisation methodology based on Least-Cost Principle
Hydrodynamic Analysis and Optimal Design of Pipelines Transporting Spherical Capsules
Rapid depletion of energy resources has immensely affected the transportation industry, where the cargo transportation prices are going considerably high. Efforts have been made to develop newer economic and environmental friendly modes of cargo transportation. One such mode is the use of energy contained within fluids that flows in the pipelines for transportation of bulk solids. Bulk solids can be transported for long distances effectively in pipelines. Raw materials can be stored in spherical containers (commonly known as capsules) transported through the pipeline.
For economical and efficient design of any transportation mode, both the local flow characteristics and the global performance parameters need to be investigated. Published literature is severely limited in establishing the effects of local flow features on system characteristics of Hydraulic Capsule Pipelines (HCPs). The present study focuses on using a well validated Computational Fluid Dynamics (CFD) based solver to numerically simulate capsule flow in HCPs for both onshore and offshore applications, including pipe bends. A novel numerical model has been employed in the present study with the aid of the dynamic mesh technique for calculating the pressure and the velocity variations within HCPs with respect to time. The numerical model for capsule flow yields realistic results for the global flow parameters as compared to the experimental data from the test rig developed for capsule flow in the present study.
In order to develop knowledge base covering a wide range of HCPs operating conditions, both horizontal and vertical pipelines including bends have been considered for numerical analysis. The numerical analysis is supported by experimental investigations. After carrying out detailed numerical analysis at component-level, a system-level optimisation study has been carried out in order to optimally design HCPs based on Least-Cost Principle