33 research outputs found

    Effect of a proprietary Magnolia and Phellodendron extract on stress levels in healthy women: a pilot, double-blind, placebo-controlled clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent research has established correlations between stress, anxiety, insomnia and excess body weight and these correlations have significant implications for health. This study measured the effects of a proprietary blend of extracts of <it>Magnolia officinalis </it>and <it>Phellodendron amurense (</it>Relora<sup>®</sup>) on anxiety, stress and sleep in healthy premenopausal women.</p> <p>Methods</p> <p>This randomized, parallel, placebo controlled clinical stud<b>y </b>was conducted with healthy, overweight (BMI 25 to 34.9), premenopausal female adults, between the ages of 20 and 50 years, who typically eat more in response to stressful situations and scores above the national mean for women on self-reporting anxiety. The intervention w<b>as </b>Relora (250 mg capsules) or identical placebo 3 times daily for 6 weeks. Anxiety as measured by the Spielberger STATE-TRAIT questionnaires, salivary amylase and cortisol levels, Likert Scales/Visual Analog Scores for sleep quality and latency, appetite, and clinical markers of safety. The study was conducted by Miami Research Associates, a clinical research organization in Miami, FL.</p> <p>Results</p> <p>The intent-to-treat population consisted of 40 subjects with 26 participants completing the study. There were no significant adverse events. Relora was effective, in comparison to placebo, in reducing temporary, transitory anxiety as measured by the Spielberger STATE anxiety questionnaire. It was not effective in reducing long-standing feelings of anxiety or depression as measured using the Spielberger TRAIT questionnaire. Other assessments conducted in this study including salivary cortisol and amylase levels, appetite, body morphology and sleep quality/latency were not significantly changed by Relora in comparison to placebo.</p> <p>Conclusion</p> <p>This pilot study indicates that Relora may offer some relief for premenopausal women experiencing mild transitory anxiety. There were no safety concerns or significant adverse events observed in this study.</p

    A Trouble Shared Is a Trouble Halved: Social Context and Status Affect Pain in Mouse Dyads

    Get PDF
    In mice behavioral response to pain is modulated by social status. Recently, social context also has been shown to affect pain sensitivity. In our study, we aimed to investigate the effects of interaction between status and social context in dyads of outbred CD-1 male mice in which the dominance/submission relationship was stable. Mice were assessed for pain response in a formalin (1% concentration) test either alone (individually tested-IT), or in pairs of dominant and subordinate mice. In the latter condition, they could be either both injected (BI) or only one injected (OI) with formalin. We observed a remarkable influence of social context on behavioral response to painful stimuli regardless of the social status of the mice. In the absence of differences between OI and IT conditions, BI mice exhibited half as much Paw-licking behavior than OI group. As expected, subordinates were hypoalgesic in response to the early phase of the formalin effects compared to dominants. Clear cut-differences in coping strategies of dominants and subordinates appeared. The former were more active, whereas the latter were more passive. Finally, analysis of behavior of the non-injected subjects (the observers) in the OI dyads revealed that dominant observers were more often involved in Self-grooming behavior upon observation of their subordinate partner in pain. This was not the case for subordinate mice observing the pain response of their dominant partner. In contrast, subordinate observers Stared at the dominant significantly more frequently compared to observer dominants in other dyads. The observation of a cagemate in pain significantly affected the observer's behavior. Additionally, the quality of observer's response was also modulated by the dominance/submission relationship

    Early experience of COVID-19 vaccination in adults with systemic rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance Vaccine Survey.

    Get PDF
    Background: We describe the early experiences of adults with systemic rheumatic disease who received the COVID-19 vaccine. Methods: From 2 April to 30 April 2021, we conducted an online, international survey of adults with systemic rheumatic disease who received COVID-19 vaccination. We collected patient-reported data on clinician communication, beliefs and intent about discontinuing disease-modifying antirheumatic drugs (DMARDs) around the time of vaccination, and patient-reported adverse events after vaccination. Results: We analysed 2860 adults with systemic rheumatic diseases who received COVID-19 vaccination (mean age 55.3 years, 86.7% female, 86.3% white). Types of COVID-19 vaccines were Pfizer-BioNTech (53.2%), Oxford/AstraZeneca (22.6%), Moderna (21.3%), Janssen/Johnson & Johnson (1.7%) and others (1.2%). The most common rheumatic disease was rheumatoid arthritis (42.3%), and 81.2% of respondents were on a DMARD. The majority (81.9%) reported communicating with clinicians about vaccination. Most (66.9%) were willing to temporarily discontinue DMARDs to improve vaccine efficacy, although many (44.3%) were concerned about rheumatic disease flares. After vaccination, the most reported patient-reported adverse events were fatigue/somnolence (33.4%), headache (27.7%), muscle/joint pains (22.8%) and fever/chills (19.9%). Rheumatic disease flares that required medication changes occurred in 4.6%. Conclusion: Among adults with systemic rheumatic disease who received COVID-19 vaccination, patient-reported adverse events were typical of those reported in the general population. Most patients were willing to temporarily discontinue DMARDs to improve vaccine efficacy. The relatively low frequency of rheumatic disease flare requiring medications was reassuring

    Involvement of the Melanocortin-1 Receptor in Acute Pain and Pain of Inflammatory but Not Neuropathic Origin

    Get PDF
    Response to painful stimuli is susceptible to genetic variation. Numerous loci have been identified which contribute to this variation, one of which, MC1R, is better known as a gene involved in mammalian hair colour. MC1R is a G protein-coupled receptor expressed in melanocytes and elsewhere and mice lacking MC1R have yellow hair, whilst humans with variant MC1R protein have red hair. Previous work has found differences in acute pain perception, and response to analgesia in mice and humans with mutations or variants in MC1R.We have tested responses to noxious and non-noxious stimuli in mutant mice which lack MC1R, or which overexpress an endogenous antagonist of the receptor, as well as controls. We have also examined the response of these mice to inflammatory pain, assessing the hyperalgesia and allodynia associated with persistent inflammation, and their response to neuropathic pain. Finally we tested by a paired preference paradigm their aversion to oral administration of capsaicin, which activates the noxious heat receptor TRPV1. Female mice lacking MC1R showed increased tolerance to noxious heat and no alteration in their response to non-noxious mechanical stimuli. MC1R mutant females, and females overexpressing the endogenous MC1R antagonist, agouti signalling protein, had a reduced formalin-induced inflammatory pain response, and a delayed development of inflammation-induced hyperalgesia and allodynia. In addition they had a decreased aversion to capsaicin at moderate concentrations. Male mutant mice showed no difference from their respective controls. Mice of either sex did not show any effect of mutant genotype on neuropathic pain.We demonstrate a sex-specific role for MC1R in acute noxious thermal responses and pain of inflammatory origin

    Food restriction reduces neurogenesis in the avian hippocampal formation

    Get PDF
    The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7-12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis) in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the hypothesis that the response to stressors in the avian hippocampal formation is homologous to that of the mammalian hippocampus

    Prognosis of subacute low back pain patients according to pain response

    No full text
    Centralization of referred pain or failure to centralize has in earlier studies been shown to be a predictor of low back pain prognosis. Research suggests that there are differences in how males and females experience pain. The aim of this study was to evaluate the outcome after 1 year, and to evaluate the prognostic value of the pain response in a mechanical test at the first consultation at a spine clinic, and the influence of gender, in order to identify patients with especially high risk of chronicity. The patients in this study were low back pain patients, included consecutively from a spine clinic in Northern Denmark. The criteria for entering this spine clinic were neck or low back pain with radiating symptoms and a duration of 4–26 weeks, without satisfactory improvement after treatment in the primary care system. The 793 patients were categorised into four subgroups according to their pain response in a mechanical test performed at the initial examination: centralization, non-lasting centralization, peripheralization and no effect. The patients were instructed in doing specific exercises according to the test results. The four subgroups were compared after 1 year with regard to changes in back and leg pain, disability and return-to-work status. The statistical evaluation was undertaken for the study group as a whole and stratified according to gender. A significant improvement in all outcome measures was found in all the subgroups, among both men and women. There were no systematic or statistically significant differences in the prognosis between the four subgroups of patients. The proportion of Centralizers in this study was 18%. The mechanical test at baseline is important for deciding the subject-specific exercises, but when treated according to test results, the prognostic value of the test seems limited
    corecore