95 research outputs found

    Phase separation enhances probability of receptor signalling and drug targeting

    Get PDF
    The probability of a given receptor tyrosine kinase (RTK) triggering a defined cellular outcome is low because of the promiscuous nature of signalling, the randomness of molecular diffusion through the cell, and the ongoing nonfunctional submembrane signalling activity or noise. Signal transduction is therefore a ‘numbers game’, where enough cell surface receptors and effector proteins must initially be engaged to guarantee formation of a functional signalling complex against a background of redundant events. The presence of intracellular liquid–liquid phase separation (LLPS) at the plasma membrane provides a mechanism through which the probabilistic nature of signalling can be weighted in favour of the required, discrete cellular outcome and mutual exclusivity in signal initiation

    Targeting the Shc-EGFR interaction with indomethacin inhibits MAP kinase pathway signalling

    Get PDF
    Receptor tyrosine kinase (RTK)-mediated hyperactivation of the MAPK/Erk pathway is responsible for a large number of pathogenic outcomes including many cancers. Considerable effort has been directed at targeting this pathway with varying degrees of long term therapeutic success. Under non-stimulated conditions Erk is bound to the adaptor protein Shc preventing aberrant signalling by sequestering Erk from activation by Mek. Activated RTK recruits Shc, via its phosphotyrosine binding (PTB) domain (ShcPTB), precipitating the release of Erk to engage in a signalling response. Here we describe a novel approach to inhibition of MAP kinase signal transduction through attempting to preserve the Shc-Erk complex under conditions of activated receptor. A library of existing drug molecules was computationally screened for hits that would bind to the ShcPTB and block its interaction with the RTKs EGFR and ErbB2. The primary hit from the screen was indomethacin, a non-steroidal anti-inflammatory drug. Validation of this molecule in vitro and in cellular efficacy studies in cancer cells provides proof of principle of the approach to pathway down-regulation and a potential optimizable lead compound

    The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription

    Get PDF
    Small RNAs play a crucial role in genome defense against transposable elements and guide Argonaute proteins to nascent RNA transcripts to induce co-transcriptional gene silencing. However, the molecular basis of this process remains unknown. Here, we identify the conserved RNA helicase Aquarius/EMB-4 as a direct and essential link between small RNA pathways and the transcriptional machinery in Caenorhabditis elegans\textit{Caenorhabditis elegans}. Aquarius physically interacts with the germline Argonaute HRDE-1. Aquarius is required to initiate small-RNA-induced heritable gene silencing. HRDE-1 and Aquarius silence overlapping sets of genes and transposable elements. Surprisingly, removal of introns from a target gene abolishes the requirement for Aquarius, but not HRDE-1, for small RNA-dependent gene silencing. We conclude that Aquarius allows small RNA pathways to compete for access to nascent transcripts undergoing co-transcriptional splicing in order to detect and silence transposable elements. Thus, Aquarius and HRDE-1 act as gatekeepers coordinating gene expression and genome defense.A.C.B. was supported by an HFSP grant to E.A.M. (RPG0014/2015). This work was supported by Cancer Research UK (C13474/A18583, C6946/A14492), the Wellcome Trust (104640/Z/14/Z, 092096/Z/10/Z), and The European Research Council (ERC, grant 260688). The work of P.M. and X.Z. is supported by NIH grant R01GM113242 and NIH grant R01GM122080. R.M. was a Commonwealth Scholar, funded by the UK Government. J.M.C., A.N., and C.J.W. were supported by the CIHR (MOP-274660) and the Canada Research Chairs Program. A.I.L. was supported by a Wellcome Trust Programme Grant (108058/Z/15/Z) and M.L was supported by 2013/RSE/SCOTGOV/ MARIECURIE

    Phosphorylation of threonine residues on Shc promotes ligand binding and mediates crosstalk between MAPK and Akt pathways in breast cancer cells

    Get PDF
    Scaffold proteins play important roles in regulating signalling network fidelity, the absence of which is often the basis for diseases such as cancer. In the present work, we show that the prototypical scaffold protein Shc is phosphorylated by the extracellular signal-regulated kinase, Erk. In addition, Shc threonine phosphorylation is specifically up-regulated in two selected triple-negative breast cancer (TNBC) cell lines. To explore how Erk-mediated threonine phosphorylation on Shc might play a role in the dysregulation of signalling events, we investigated how Shc affects pathways downstream of EGF receptor. Using an in vitro model and biophysical analysis, we show that Shc threonine phosphorylation is responsible for elevated Akt and Erk signalling, potentially through the recruitment of the 14-3-3 ζ and Pin-1 proteins

    Regulation of microRNA expression by the adaptor protein GRB2

    Get PDF
    Protein interactions with the microRNA (miRNA)-mediated gene silencing protein Argonaute 2 (AGO2) control miRNA expression. miRNA biogenesis starts with the production of precursor transcripts and culminates with the loading of mature miRNA onto AGO2 by DICER1. Here we reveal an additional component to the regulatory mechanism for miRNA biogenesis involving the adaptor protein, growth factor receptor-bound protein 2 (GRB2). The N-terminal SH3 domain of GRB2 is recruited to the PAZ domain of AGO2 forming a ternary complex containing GRB2, AGO2 and DICER1. Using small-RNA sequencing we identified two groups of miRNAs which are regulated by the binding of GRB2. First, mature and precursor transcripts of mir-17~92 and mir-221 miRNAs are enhanced. Second, mature, but not precursor, let-7 family miRNAs are diminished suggesting that GRB2 directly affects loading of these miRNAs. Notably, the resulting loss of let-7 augments expression of oncogenic targets such as RAS. Thus, a new role for GRB2 is established with implications for cancer pathogenesis through regulation of miRNA biogenesis and oncogene expression

    A randomized clinical trial of auricular point acupressure for chronic low back pain : a feasibility study

    Get PDF
    Author name used in this publication: Lorna Kwai-Ping Suen2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Localization of hRad9 in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>hRad9 </it>is a cell cycle checkpoint gene that is up-regulated in breast cancer. We have previously shown that the mRNA up-regulation correlated with tumor size and local recurrence. Immunohistochemical studies were made to better define the role of <it>hRad9 </it>in breast carcinogenesis.</p> <p>Methods</p> <p>Localisation of hRad9 protein were performed on paired tumor and normal breast tissues. Immunoblotting with and without dephosphorylation was used to define the protein isolated from breast cancer cells.</p> <p>Results</p> <p>Increased hRad9 protein was observed in breast cancer cells nucleus compared to non-tumor epithelium. This nuclear protein existed in hyperphosphorylated forms which may be those of the hRad9-hRad1-hHus1 complex.</p> <p>Conclusion</p> <p>Finding of hyperphosphorylated forms of hRad9 in the nucleus of cancer cells is in keeping with its function in ameliorating DNA instability, whereby it inadvertently assists tumor growth.</p

    Grb2 monomer-dimer equilibrium determines normal versus oncogenic function

    Get PDF
    The adaptor protein growth factor receptor-bound protein 2 (Grb2) is ubiquitously expressed in eukaryotic cells and involved in a multitude of intracellular protein interactions. Grb2 plays a pivotal role in tyrosine kinase-mediated signal transduction including linking receptor tyrosine kinases to the Ras/mitogen-activated protein (MAP) kinase pathway, which is implicated in oncogenic outcome. Grb2 exists in a constitutive equilibrium between monomeric and dimeric states. Here we show that only monomeric Grb2 is capable of binding to SOS and upregulating MAP kinase signalling and that the dimeric state is inhibitory to this process. Phosphorylation of tyrosine 160 (Y160) on Grb2, or binding of a tyrosylphosphate-containing ligand to the SH2 domain of Grb2, results in dimer dissociation. Phosphorylation of Y160 on Grb2 is readily detectable in the malignant forms of human prostate, colon and breast cancers. The self-association/dissociation of Grb2 represents a switch that regulates MAP kinase activity and hence controls cancer progression

    Identification of Novel Linear Megaplasmids Carrying a ß-Lactamase Gene in Neurotoxigenic Clostridium butyricum Type E Strains

    Get PDF
    Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in 1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P) and the lincomycin resistance protein lmrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of the Italian C. butyricum type E strains. Of note, a ß-lactamase gene probe hybridized to the megaplasmids of eight neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food implicated in foodborne botulism, whereas this ß-lactam antibiotic resistance gene was absent form the megaplasmids of the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an important role in the emergence of C. butyricum type E as a human pathogen

    Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis

    Get PDF
    Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP3R) serve to discharge Ca2+ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP3R isoforms and protect cells from apoptosis, reducing ER Ca2+ release. However, it has not been elucidated which IP3R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP3R I, strongly suppresses IP3-mediated Ca2+ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca2+ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca2+ release. Moreover, regulating Ca2+ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP3R III, leading to diminished Ca2+ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt
    corecore