197 research outputs found

    Longitudinal segmentation of age-related white matter hyperintensities

    Get PDF
    Although white matter hyperintensities evolve in the course of ageing, few solutions exist to consider the lesion segmentation problem longitudinally. Based on an existing automatic lesion segmentation algorithm, a longitudinal extension is proposed. For evaluation purposes, a longitudinal lesion simulator is created allowing for the comparison between the longitudinal and the cross-sectional version in various situations of lesion load progression. Finally, applied to clinical data, the proposed framework demonstrates an increased robustness compared to available cross-sectional methods and findings are aligned with previously reported clinical patterns

    Automated segmentation and characterisation of white matter hyperintensities

    Get PDF
    Neuroimaging has enabled the observation of damage to the white matter that occurs frequently in elderly population and is depicted as hyperintensities in specific magnetic resonance images. Since the pathophysiology underlying the existence of these signal abnormalities and the association with clinical risk factors and outcome is still investigated, a robust and accurate quantification and characterisation of these observations is necessary. In this thesis, I developed a data-driven split and merge model selection framework that results in the joint modelling of normal appearing and outlier observations in a hierarchical Gaussian mixture model. The resulting model can then be used to segment white matter hyperintensities (WMH) in a post-processing step. The validity of the method in terms of robustness to data quality, acquisition protocol and preprocessing and its comparison to the state of the art is evaluated in both simulated and clinical settings. To further characterise the lesions, a subject-specific coordinate frame that divides the WM region according to the relative distance between the ventricular surface and the cortical sheet and to the lobar location is introduced. This coordinate frame is used for the comparison of lesion distributions in a population of twin pairs and for the prediction and standardisation of visual rating scales. Lastly the cross-sectional method is extended into a longitudinal framework, in which a Gaussian Mixture model built on an average image is used to constrain the representation of the individual time points. The method is validated through a purpose-build longitudinal lesion simulator and applied to the investigation of the relationship between APOE genetic status and lesion load progression

    APOE ε4 status is associated with white matter hyperintensities volume accumulation rate independent of AD diagnosis.

    Get PDF
    To assess the relationship between carriage of APOE ε4 allele and evolution of white matter hyperintensities (WMHs) volume, we longitudinally studied 339 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort with diagnoses ranging from normal controls to probable Alzheimer's disease (AD). A purpose-built longitudinal automatic method was used to segment WMH using constraints derived from an atlas-based model selection applied to a time-averaged image. Linear mixed models were used to evaluate the differences in rate of change across diagnosis and genetic groups. After adjustment for covariates (age, sex, and total intracranial volume), homozygous APOE ε4ε4 subjects had a significantly higher rate of WMH accumulation (22.5% per year 95% CI [14.4, 31.2] for a standardized population having typical values of covariates) compared with the heterozygous (ε4ε3) subjects (10.0% per year [6.7, 13.4]) and homozygous ε3ε3 (6.6% per year [4.1, 9.3]) subjects. Rates of accumulation increased with diagnostic severity; controls accumulated 5.8% per year 95% CI: [2.2, 9.6] for the standardized population, early mild cognitive impairment 6.6% per year [3.9, 9.4], late mild cognitive impairment 12.5% per year [8.2, 17.0] and AD subjects 14.7% per year [6.0, 24.0]. Following adjustment for APOE status, these differences became nonstatistically significant suggesting that APOE ε4 genotype is the major driver of accumulation of WMH volume rather than diagnosis of AD

    A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI Image Quality

    Get PDF
    Quality control (QC) of medical images is essential to ensure that downstream analyses such as segmentation can be performed successfully. Currently, QC is predominantly performed visually at significant time and operator cost. We aim to automate the process by formulating a probabilistic network that estimates uncertainty through a heteroscedastic noise model, hence providing a proxy measure of task-specific image quality that is learnt directly from the data. By augmenting the training data with different types of simulated k-space artefacts, we propose a novel cascading CNN architecture based on a student-teacher framework to decouple sources of uncertainty related to different k-space augmentations in an entirely self-supervised manner. This enables us to predict separate uncertainty quantities for the different types of data degradation. While the uncertainty measures reflect the presence and severity of image artefacts, the network also provides the segmentation predictions given the quality of the data. We show models trained with simulated artefacts provide informative measures of uncertainty on real-world images and we validate our uncertainty predictions on problematic images identified by human-raters

    Relationship of grey and white matter abnormalities with distance from the surface of the brain in multiple sclerosis

    Get PDF
    OBJECTIVE: To assess the association between proximity to the inner (ventricular and aqueductal) and outer (pial) surfaces of the brain and the distribution of normal appearing white matter (NAWM) and grey matter (GM) abnormalities, and white matter (WM) lesions, in multiple sclerosis (MS). METHODS: 67 people with relapse-onset MS and 30 healthy controls were included in the study. Volumetric T1 images and high-resolution (1 mm(3)) magnetisation transfer ratio (MTR) images were acquired and segmented into 12 bands between the inner and outer surfaces of the brain. The first and last bands were discarded to limit partial volume effects with cerebrospinal fluid. MTR values were computed for all bands in supratentorial NAWM, cerebellar NAWM and brainstem NA tissue, and deep and cortical GM. Band WM lesion volumes were also measured. RESULTS: Proximity to the ventricular surfaces was associated with progressively lower MTR values in the MS group but not in controls in supratentorial and cerebellar NAWM, brainstem NA and in deep and cortical GM. The density of WM lesions was associated with proximity to the ventricles only in the supratentorial compartment, and no link was found with distance from the pial surfaces. CONCLUSIONS: In MS, MTR abnormalities in NAWM and GM are related to distance from the inner and outer surfaces of the brain, and this suggests that there is a common factor underlying their spatial distribution. A similar pattern was not found for WM lesions, raising the possibility that different factors promote their formation

    A k-Space Model of Movement Artefacts: Application to Segmentation Augmentation and Artefact Removal

    Get PDF
    Patient movement during the acquisition of magnetic resonance images (MRI) can cause unwanted image artefacts. These artefacts may affect the quality of clinical diagnosis and cause errors in automated image analysis. In this work, we present a method for generating realistic motion artefacts from artefact-free magnitude MRI data to be used in deep learning frameworks, increasing training appearance variability and ultimately making machine learning algorithms such as convolutional neural networks (CNNs) more robust to the presence of motion artefacts. By modelling patient movement as a sequence of randomly-generated, ‘demeaned’, rigid 3D affine transforms, we resample artefact-free volumes and combine these in k-space to generate motion artefact data. We show that by augmenting the training of semantic segmentation CNNs with artefacts, we can train models that generalise better and perform more reliably in the presence of artefact data, with negligible cost to their performance on clean data. We show that the performance of models trained using artefact data on segmentation tasks on real-world test-retest image pairs is more robust. We also demonstrate that our augmentation model can be used to learn to retrospectively remove certain types of motion artefacts from real MRI scans. Finally, we show that measures of uncertainty obtained from motion augmented CNN models reflect the presence of artefacts and can thus provide relevant information to ensure the safe usage of deep learning extracted biomarkers in a clinical pipeline

    Pimms: Permutation invariant multi-modal segmentation

    Get PDF
    In a research context, image acquisition will often involve a pre-defined static protocol and the data will be of high quality. If we are to build applications that work in hospitals without significant operational changes in care delivery, algorithms should be designed to cope with the available data in the best possible way. In a clinical environment, imaging protocols are highly flexible, with MRI sequences commonly missing appropriate sequence labeling (e.g. T1, T2, FLAIR). To this end we introduce PIMMS, a Permutation Invariant Multi-Modal Segmentation technique that is able to perform inference over sets of MRI scans without using modality labels. We present results which show that our convolutional neural network can, in some settings, outperform a baseline model which utilizes modality labels, and achieve comparable performance otherwise

    Distinguishing Healthy Ageing from Dementia: A Biomechanical Simulation of Brain Atrophy Using Deep Networks

    Get PDF
    Biomechanical modeling of tissue deformation can be used to simulate different scenarios of longitudinal brain evolution. In this work, we present a deep learning framework for hyper-elastic strain modelling of brain atrophy, during healthy ageing and in Alzheimer’s Disease. The framework directly models the effects of age, disease status, and scan interval to regress regional patterns of atrophy, from which a strain-based model estimates deformations. This model is trained and validated using 3D structural magnetic resonance imaging data from the ADNI cohort. Results show that the framework can estimate realistic deformations, following the known course of Alzheimer’s disease, that clearly differentiate between healthy and demented patterns of ageing. This suggests the framework has potential to be incorporated into explainable models of disease, for the exploration of interventions and counterfactual examples
    corecore