130 research outputs found

    Local sympathetic neurons promote neutrophil egress from the bone marrow at the onset of acute inflammation

    Full text link
    This is a pre-copyedited, author-produced version of an article accepted for publication in International Immunology following peer review. The version of record Tomoka Ao, Junichi Kikuta, Takao Sudo, Yutaka Uchida, Kenta Kobayashi, Masaru Ishii, Local sympathetic neurons promote neutrophil egress from the bone marrow at the onset of acute inflammation, International Immunology, Volume 32, Issue 11, November 2020, Pages 727–736. is available online at: https://doi.org/10.1093/intimm/dxaa025

    The adverse effect of an unplanned surgical excision of foot soft tissue sarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant soft tissue tumors of the foot are extremely rare and thus can be prematurely excised without appropriate preoperative evaluation. The present study compares adverse effects between unplanned and planned surgical excisions.</p> <p>Methods</p> <p>We retrospectively reviewed the clinical records, radiographs, pathology reports and pathological specimens of 14 consecutive patients with soft tissue sarcoma of the foot among 592 with sarcomas between 1973 and 2009. We then compared the incidence and clinical outcomes after unplanned (UT; n = 5) and planned (PT; n = 9) surgical excisions of foot sarcomas.</p> <p>Results</p> <p>The most frequent diagnosis was synovial sarcoma (n = 4; 28.6%). The overall 5-year survival rates of the PT and UT groups were 65.6% and 60.0%, respectively, and the event-free 5-year survival rates were 63.5% and 40.0%, respectively. Event-free and overall survival rates did not significantly differ between the two groups. However, tumors were significantly larger in the PT group than in the UT group (p < 0.05).</p> <p>Conclusions</p> <p>Unplanned resection lead to a relatively worse prognosis and a likelihood of recurrence despite additional resections. We recommend that soft tumors of the foot should only be excised after appropriate preoperative evaluation regardless of the size of the tumor.</p

    Development of an intravital imaging system for the synovial tissue reveals the dynamics of CTLA-4 Ig in vivo

    Get PDF
    There have been many attempts to visualize the inflamed joints using multiphoton microscopy. However, due to the hypervascular and multilayered structure of the inflamed synovium, intravital imaging of the deep synovial tissue has been difficult. Here, we established original intravital imaging systems to visualize synovial tissue and pathological osteoclasts at the pannus–bone interface using multiphoton microscopy. Combined with fluorescence-labeling of CTLA-4 Ig, a biological agent used for the treatment of rheumatoid arthritis, we identified that CTLA-4 Ig was distributed predominantly within the inflamed synovium and bound to CX3CR1+ macrophages and CD140a+ fibroblasts 6 h after injection, but not to mature osteoclasts. Intravital imaging of blood and lymphatic vessels in the inflamed synovium further showed that extravasated CTLA-4 Ig was immediately drained through lymphatic vessels under acute arthritic conditions, but the drainage activity was retarded under chronic conditions. These results indicate that this intravital synovial imaging system can serve as a platform for exploring the dynamics of immune cells, osteoclasts, and biological agents within the synovial microenvironment in vivo.Hasegawa T., Kikuta J., Sudo T., et al. Development of an intravital imaging system for the synovial tissue reveals the dynamics of CTLA-4 Ig in vivo. Scientific Reports 10, 13480 (2020); https://doi.org/10.1038/s41598-020-70488-y

    Migration arrest of chemoresistant leukemia cells mediated by MRTF-SRF pathway

    Get PDF
    Background: Dormant chemotherapy-resistant leukemia cells can survive for an extended period before relapse. Nevertheless, the mechanisms underlying the development of chemoresistance in vivo remain unclear. Methods: Using intravital bone imaging, we characterized the behavior of murine acute myeloid leukemia (AML) cells (C1498) in the bone marrow before and after chemotherapy with cytarabine. Results: Proliferative C1498 cells exhibited high motility in the bone marrow. Cytarabine treatment impaired the motility of residual C1498 cells. However, C1498 cells regained their migration potential after relapse. RNA sequencing revealed that cytarabine treatment promoted MRTF-SRF pathway activation. MRTF inhibition using CCG-203971 augmented the anti-tumor effects of chemotherapy in our AML mouse model, as well as suppressed the migration of chemoresistant C1498 cells. Conclusions: These results provide novel insight into the role of cell migration arrest on the development of chemoresistance in AML, as well as provide a strong rationale for the modulation of cellular motility as a therapeutic target for refractory AML.Morimatsu M., Yamashita E., Seno S., et al. Migration arrest of chemoresistant leukemia cells mediated by MRTF-SRF pathway. Inflammation and Regeneration 40, 15 (2020); https://doi.org/10.1186/s41232-020-00127-6

    Thrombomodulin induces anti-inflammatory effects by inhibiting the rolling adhesion of leukocytes in vivo

    Get PDF
    Thrombomodulin (TM) is an integral membrane protein expressed on the surface of vascular endothelial cells that suppresses blood coagulation. Recent studies have shown that TM exhibits anti-inflammatory effects by inhibiting leukocyte recruitment. However, the actual modes of action of TM in vivo remain unclear. Here, we describe the pharmacological effects of recombinant human soluble TM (TM alfa) on leukocyte dynamics in living mice using intravital imaging techniques. Under control conditions, neutrophils exhibited three distinct types of adhesion behavior in vessels: 1) “non-adhesion”, in which cells flowed without vessel adhesion; 2) “rolling adhesion”, in which cells transiently interacted with the endothelium; and 3) “tight binding”, in which cells bound strongly to the endothelial cells. Compared to control conditions, local lipopolysaccharide stimulation resulted in an increased frequency of rolling adhesion that was not homogeneously distributed on vessel walls but occurred at specific endothelial sites. Under inflammatory conditions, TM alfa, particularly the D1 domain which is a lectin-like region of TM, significantly decreased the frequency of rolling adhesion, but did not influence the number of tight bindings. This was the first study to demonstrate that TM alfa exerts anti-inflammatory effects by inhibiting rolling adhesion of neutrophils to vascular endothelial cells in living mice.Nishizawa S., Kikuta J., Seno S., et al. Thrombomodulin induces anti-inflammatory effects by inhibiting the rolling adhesion of leukocytes in vivo. Journal of Pharmacological Sciences 143, 17 (2020); https://doi.org/10.1016/j.jphs.2020.01.001

    Valosin-Containing Protein/p97 as a Novel Therapeutic Target in Acute Lymphoblastic Leukemia

    Get PDF
    B acute lymphoblastic leukemia (B-ALL) cells are distinctively vulnerable to endoplasmic reticulum (ER) stress. Recently, inhibition of p97 was shown to induce ER stress and subsequently cell death in solid tumors and in multiple myeloma. We investigated the role of a novel, orally available, p97 inhibitor (CB-5083; Cleave Biosciences) in B-ALL. CB-5083 induced a significant reduction in viability in 10 human B-ALL cell lines, harboring the most common fusion-genes involved in pediatric and adult B-ALL, with IC50s ranging from 0.34 to 0.76 \ub5M. Moreover, CB-5083 significantly reduced the colony formation of OP1 and NALM6 cells. Early and strong induction of apoptosis was demonstrated in BALL1 and OP1 cells, together with a robust cleavage of PARP. CB-5083 induced ER stress, as documented through: 1) prominent expression of chaperones (GRP78, GRP94, PDI, DNAJC3, and DNAJB9); 2) increased activation of IRE1-alpha, as demonstrated by the splicing of XBP1; and 3) activation of PERK, which resulted in a significant overexpression of CHOP, and its downstream genes. CB-5083 reduced the viability also in GRP78-/-, GRP94-/-, and XBP1-/- cells, suggesting that none of these proteins alone was strictly required for CB-5083 activity. Moreover, we showed that the absence of XBP1 (XBP1-/-) increased the sensitivity to CB-5083, leading to the hypothesis that XBP1 splicing counteracts the activity of CB-5083, probably mitigating ER stress. Finally, vincristine was synergistic with CB-5083 in both BALL1 and OP1 cells. In summary, the targeting of p97 with CB-5083 is a novel promising therapeutic approach that should be further evaluated in B-ALL

    SLPI is a critical mediator that controls PTH-induced bone formation

    Get PDF
    Osteoclastic bone resorption and osteoblastic bone formation/replenishment are closely coupled in bone metabolism. Anabolic parathyroid hormone (PTH), which is commonly used for treating osteoporosis, shifts the balance from osteoclastic to osteoblastic, although it is unclear how these cells are coordinately regulated by PTH. Here, we identify a serine protease inhibitor, secretory leukocyte protease inhibitor (SLPI), as a critical mediator that is involved in the PTH-mediated shift to the osteoblastic phase. Slpi is highly upregulated in osteoblasts by PTH, while genetic ablation of Slpi severely impairs PTH-induced bone formation. Slpi induction in osteoblasts enhances its differentiation, and increases osteoblast–osteoclast contact, thereby suppressing osteoclastic function. Intravital bone imaging reveals that the PTH-mediated association between osteoblasts and osteoclasts is disrupted in the absence of SLPI. Collectively, these results demonstrate that SLPI regulates the communication between osteoblasts and osteoclasts to promote PTH-induced bone anabolism.Morimoto A., Kikuta J., Nishikawa K., et al. SLPI is a critical mediator that controls PTH-induced bone formation. Nature Communications 12, 2136 (2021); https://doi.org/10.1038/s41467-021-22402-x

    Label-free multiphoton excitation imaging as a promising diagnostic tool for breast cancer

    Get PDF
    Histopathological diagnosis is the ultimate method of attaining the final diagnosis; however, the observation range is limited to the two-dimensional plane, and it requires thin slicing of the tissue, which limits diagnostic information. To seek solutions for these problems, we proposed a novel imaging-based histopathological examination. We used the multiphoton excitation microscopy (MPM) technique to establish a method for visualizing unfixed/unstained human breast tissues. Under near-infrared ray excitation, fresh human breast tissues emitted fluorescent signals with three major peaks, which enabled visualizing the breast tissue morphology without any fixation or dye staining. Our study using human breast tissue samples from 32 patients indicated that experienced pathologists can estimate normal or cancerous lesions using only these MPM images with a kappa coefficient of 1.0. Moreover, we developed an image classification algorithm with artificial intelligence that enabled us to automatically define cancer cells in small areas with a high sensitivity of ≥0.942. Taken together, label-free MPM imaging is a promising method for the real-time automatic diagnosis of breast cancer.This is the pre-peer reviewed version of the following article:Matsui T., Iwasa A., Mimura M., et al. Label-free multiphoton excitation imaging as a promising diagnostic tool for breast cancer. Cancer Science 113, 2916 (2022), which has been published in final form at https://doi.org/10.1111/cas.15428. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving
    corecore