3 research outputs found

    Parametric studies on buckling of thin walled channel beams

    No full text
    Abstract The lateral buckling analysis of cold-formed thin walled beams subjected to pure bending moments has been performed. The critical buckling loads are estimated based an optimization criteria. The estimated critical buckling stresses are compared with the published results, they show excellent agreement. The effect of the beam length, radius and thickness of the flanges and the length of the extended open flanges, on the critical buckling stresses have been studied for several combinations of the geometric parameters of the beam. Among the three beams, the critical buckling moments for the beam with the extended open flanges are found to be the maximum. However, considering the material and manufacturing costs, beams with rounded cross section are efficient in resisting the buckling loads

    Buckling analysis of thin wall stiffened composite panels

    No full text
    Abstract We present the pre and post buckling analysis of stiffened composite panels based on the finite element models. Individual buckling studies are conducted on the stiffened composite panel madeup of woven fabric CFC/epoxy, E-glass/epoxy and the Kevlar/epoxy composites. Straight, T shaped and I shaped stiffeners are considered to stiffen the panel. The panel is fabricated with 8 layers and the stiffeners are madeup of 16 layers, of equal thickness arranged in different orientations. The panel is subjected to a uniform axial compression load of 10 kN. The distribution of the buckling stresses and the buckling loads with different panel and stiffener combinations are estimated for three different layup sequences. The variation of the buckling stresses and the buckling loads from the numerical model are compared with the experiment. The results are in excellent agreement
    corecore