5 research outputs found

    The origin of human pathogenicity and biological interactions in Chaetothyriales

    Get PDF
    Fungi in the order Chaetothyriales are renowned for their ability to cause human infections. Nevertheless, they are not regarded as primary pathogens, but rather as opportunists with a natural habitat in the environment. Extremotolerance is a major trend in the order, but quite diferent from black yeasts in Capnodiales which focus on endurance, an important additional parameter is advancing toxin management. In the ancestral ecology of rock colonization, the association with metabolite-producing lichens is signifcant. Ant-association, dealing with pheromones and repellents, is another mainstay in the order. The phylogenetically derived family, Herpotrichiellaceae, shows dual ecology in monoaromatic hydrocarbon assimilation and the ability to cause disease in humans and cold-blooded vertebrates. In this study, data on ecology, phylogeny, and genomics were collected and analyzed in order to support this hypothesis on the evolutionary route of the species of Chaetothyriales. Comparing the ribosomal tree with that of enzymes involved in toluene degradation, a signifcant expansion of cytochromes is observed and the toluene catabolism is found to be complete in some of the Herpotrichiellaceae. This might enhance human systemic infection. However, since most species have to be traumatically inoculated in order to cause disease, their invasive potential is categorized as opportunism. Only in chromoblastomycosis, true pathogenicity might be surmised. The criterion would be the possible escape of agents of vertebrate disease from the host, enabling dispersal of adapted genotypes to subsequent generations.info:eu-repo/semantics/publishedVersio

    Spectrum of Fusarium infections in tropical dermatology evidenced by multilocus sequencing typing diagnostics

    No full text
    Fusarium species are emerging causative agents of superficial, cutaneous and systemic human infections. In a study of the prevalence and genetic diversity of 464 fungal isolates from a dermatological ward in Thailand, 44 strains (9.5%) proved to belong to the genus Fusarium. Species identification was based on sequencing a portion of translation elongation factor 1-alpha (tef1-α), rDNA internal transcribed spacer and RNA-dependent polymerase subunit II (rpb2). Our results revealed that 37 isolates (84%) belonged to the Fusarium solani species complex (FSSC), one strain matched with Fusarium oxysporum (FOSC) complex 33, while six others belonged to the Fusarium incarnatum-equiseti species complex. Within the FSSC two predominant clusters represented Fusarium falciforme and recently described F. keratoplasticum. No gender differences in susceptibility to Fusarium were noted, but infections on the right side of the body prevailed. Eighty-nine per cent of the Fusarium isolates were involved in onychomycosis, while the remaining ones caused paronychia or severe tinea pedis. Comparing literature data, superficial infections by FSSC appear to be prevalent in Asia and Latin America, whereas FOSC is more common in Europe. The available data suggest that Fusarium is a common opportunistic human pathogens in tropical areas and has significant genetic variation worldwide

    Global molecular diversity of the halotolerant fungus Hortaea werneckii

    Full text link
    A global set of clinical and environmental strains of the halotolerant black yeast-like fungus Hortaea werneckii are analyzed by multilocus sequencing and AFLP, and physiological parameters are determined. Partial translation elongation factor 1-α proves to be suitable for typing because of the presence/absence of introns and also the presence of several SNPs. Local clonal expansion could be established by a combination of molecular methods, while the population from the Mediterranean Sea water also responds differently to combined temperature and salt stress. The species comprises molecular populations, which in part also differ physiologically allowing further diversification, but clinical strains did not deviate significantly from their environmental counterparts

    Global Molecular Diversity of the Halotolerant Fungus Hortaea werneckii

    No full text
    A global set of clinical and environmental strains of the halotolerant black yeast-like fungus Hortaea werneckii are analyzed by multilocus sequencing and AFLP, and physiological parameters are determined. Partial translation elongation factor 1-α proves to be suitable for typing because of the presence/absence of introns and also the presence of several SNPs. Local clonal expansion could be established by a combination of molecular methods, while the population from the Mediterranean Sea water also responds differently to combined temperature and salt stress. The species comprises molecular populations, which in part also differ physiologically allowing further diversification, but clinical strains did not deviate significantly from their environmental counterparts
    corecore