335 research outputs found

    Effects of Electron Correlations on Hofstadter Spectrum

    Full text link
    By allowing interactions between electrons, a new Harper's equation is derived to examine the effects of electron correlations on the Hofstadter energy spectra. It is shown that the structure of the Hofstadter butterfly ofr the system of correlated electrons is modified only in the band gaps and the band widths, but not in the characteristics of self-similarity and the Cantor set.Comment: 13 pages, 5 Postscript figure

    The structure of fluid trifluoromethane and methylfluoride

    Full text link
    We present hard X-ray and neutron diffraction measurements on the polar fluorocarbons HCF3 and H3CF under supercritical conditions and for a range of molecular densities spanning about a factor of ten. The Levesque-Weiss-Reatto inversion scheme has been used to deduce the site-site potentials underlying the measured partial pair distribution functions. The orientational correlations between adjacent fluorocarbon molecules -- which are characterized by quite large dipole moments but no tendency to form hydrogen bonds -- are small compared to a highly polar system like fluid hydrogen chloride. In fact, the orientational correlations in HCF3 and H3CF are found to be nearly as small as those of fluid CF4, a fluorocarbon with no dipole moment.Comment: 11 pages, 9 figure

    Sound-propagation gap in fluid mixtures

    Get PDF
    We discuss the behavior of the extended sound modes of a dense binary hard-sphere mixture. In a dense simple hard-sphere fluid the Enskog theory predicts a gap in the sound propagation at large wave vectors. In a binary mixture the gap is only present for low concentrations of one of the two species. At intermediate concentrations sound modes are always propagating. This behavior is not affected by the mass difference of the two species, but it only depends on the packing fractions. The gap is absent when the packing fractions are comparable and the mixture structurally resembles a metallic glass.Comment: Published; withdrawn since ordering in archive gives misleading impression of new publicatio

    Phase Separation Based on U(1) Slave-boson Functional Integral Approach to the t-J Model

    Full text link
    We investigate the phase diagram of phase separation for the hole-doped two dimensional system of antiferromagnetically correlated electrons based on the U(1) slave-boson functional integral approach to the t-J model. We show that the phase separation occurs for all values of J/t, that is, whether 0<J/t<10 < J/t < 1 or J/t1J/t \geq 1 with J, the Heisenberg coupling constant and t, the hopping strength. This is consistent with other numerical studies of hole-doped two dimensional antiferromagnets. The phase separation in the physically interesting J region, 0<J/t0.40 < J/t \lesssim 0.4 is examined by introducing hole-hole (holon-holon) repulsive interaction. We find from this study that with high repulsive interaction between holes the phase separation boundary tends to remain robust in this low JJ region, while in the high J region, J/t > 0.4, the phase separation boundary tends to disappear.Comment: 4 pages, 2 figures, submitted to Phys. Rev.

    On the Origin of Peak-dip-hump Structure in the In-plane Optical Conductivity of the High TCT_C Cuprates; Role of Antiferromagnetic Spin Fluctuations of Short Range Order

    Full text link
    An improved U(1) slave-boson approach is applied to study the optical conductivity of the two dimensional systems of antiferromagnetically correlated electrons over a wide range of hole doping and temperature. Interplay between the spin and charge degrees of freedom is discussed to explain the origin of the peak-dip-hump structure in the in-plane conductivity of high TCT_C cuprates. The role of spin fluctuations of short range order(spin singlet pair) is investigated. It is shown that the spin fluctuations of the short range order can cause the mid-infrared hump, by exhibiting a linear increase of the hump frequency with the antiferromagnetic Heisenberg coupling strength

    Role of spinon and spinon singlet pair excitations on phase transitions in dwaved-wave superconductors

    Full text link
    We examine the roles of massless Dirac spinon and spin singlet pair excitations on the phase transition in dwaved-wave superconductors. Although the massless spinon excitations in the presence of the spin singlet pair excitations do not alter the nature of the phase transition at T=0T = 0, that is, the XY universality class, they are seen to induce an additional attractive interaction potential between vortices, further stabilizing vortex-antivortex pairs at low temperature for lightly doped high TcT_c samples.Comment: 5 pages, 1 figur

    Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA

    Get PDF
    In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action
    corecore