24 research outputs found

    ETUDE PHARMACOCINETIQUE ET PHARMACODYNAMIQUE DE LA LETALITE INDUITE PAR L'IMIDACLOPRIDE ET SES METABOLITES CHEZ L'ABEILLE DOMESTIQUE (APIS MELLIFERA L.)

    No full text
    LYON1-BU Santé (693882101) / SudocPARIS-BIUM (751062103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    CHARACTERISTICS OF IMIDACLOPRID TOXICITY IN TWO APIS MELLIFERA SPECIES

    No full text
    International audienceImidacloprid (1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine) belongs to a new chemical family of chloronicotinyl compounds whose mode of action on the insect nervous system differs from that of traditional neurotoxic products. Imidacloprid, a strong systemic compound, is effective against several sucking and mining pests. The acute toxicity of contact and oral applications on two Apis mellifera subspecies, Apis mellifera mellifera and Apis mellifera caucasica, was investigated. In all toxicological studies, each dose included three cages of 20 individuals and each study was replicated three times. The dose-mortality relation revealed some unusual characteristics. At low imidacloprid concentrations, a biphasic mortality appeared, particularly with the contact exposure route. At moderate doses, mortality profiles at 24 and 48 h were different only after oral application. Response kinetics showed that mortality was delayed at the higher doses of imidacloprid. After oral intoxication, the LD50 values of imidacloprid at 24 and 48 h were about 5 ng/bee for both A. m. mellifera and A. m. caucasica. After contact application, the LD50 values at 24 and 48 h were approximately 24 ng/bee for A. m. mellifera and 14 ng/bee for A. m. caucasica. Imidacloprid ranks among the more potent contact insecticides in this important pollinator species

    Metabolism of imidacloprid inApis mellifera

    No full text
    International audienceBiotransformation of imidacloprid and the appearance of olefin and 5-hydroxyimidacloprid metabolites in the honeybee were studied by HPLC-MS/MS analysis. Honeybees were treated orally with imidacloprid at 20 and 50 ”g kg −1 bee. Imidacloprid was metabolised relatively quickly and thoroughly. Twenty minutes after the beginning of imidacloprid ingestion, the sum of the residues from the three compounds amounted to only 70% of the actual given dose. Imidacloprid, 5-hydroxyimidacloprid and olefin represented, respectively, 50%, 9% and 8% of the actual ingested dose. Six and 24 h, respectively, after ingestion of imidacloprid at 20 and 50 ”g kg −1 bee, imidacloprid could no longer be detected in the honeybee. Imidacloprid had a half-life ranging between 4.5 and 5 h and was rapidly metabolised into 5-hydroxyimidacloprid and olefin. Except 5-hydroxyimidacloprid in the 20 ”g kg −1 treatment, these two metabolites presented a peak value 4 h after ingestion of the 20 and 50 ”g kg −1 doses. This time fully coincided with the appearance of mortality induced by imidacloprid after acute oral intoxication. These results suggested that the immediate neurotoxicity symptoms are due to the action of imidacloprid, whereas 5-hydroxyimidacloprid and/or olefin are involved in honeybee mortality. In addition, it was likely that the 30% of residues undetected 20 min after intoxication were imidacloprid metabolites, although not 5-hydroxyimidacloprid or olefin. Thus, 5-hydroxyimidacloprid and olefin could not be the major metabolites in the worker bees

    In vivo distribution and metabolisation of14C-imidacloprid in different compartments of Apis mellifera L

    No full text
    International audienceIn vivo distribution of the neonicotinoid insecticide, imidacloprid, was followed during 72 h in six biological compartments of Apis mellifera L: head, thorax, abdomen, haemolymph, midgut and rectum. Honeybees were treated orally with 100 ”g of 14 C-imidacloprid per kg of bee, a dose close to the median lethal dose. Elimination half-life of total radioactivity in honeybee was 25 h. Haemolymph was the compartment with the lowest and rectum that with the highest level of total radioactivity during the whole study, with a maximum 24 h after treatment. Elimination half-life of imidacloprid in whole honeybee was 5 h. Imidacloprid was readily distributed and metabolised only by Phase I enzymes into five metabolites: 4/5-hydroxy-imidacloprid, 4,5-dihydroxy-imidacloprid, 6-chloronicotinic acid, and olefin and urea derivatives. The guanidine derivative was not detected. The urea derivative and 6-chloronicotinic acid were the main metabolites and appeared particularly in midgut and rectum. The olefin derivative and 4/5-hydroxy-imidacloprid preferentially occurred in head, thorax and abdomen, which are nicotinic acetylcholine receptor-rich tissues. Moreover, they presented a peak value around 4 h after imidacloprid ingestion. These results explain the prolongation of imidacloprid action in bees, and particularly the differences between rapid intoxication symptoms and late mortality

    Impact of apple orchard management strategies on earthworm (Allolobophora chlorotica) energy reserves

    No full text
    International audienceTo assess the effects of agricultural management strategies on earthworm energy reserves (glycogen and lipids), 16 apple orchards under different strategies (organic, Integrated Pest Management (IPM), conventional and abandoned) were selected. Soil samples and 10 adults of the most common earthworm species (Allolobophora chlorotica) were sampled in each orchard. The glycogen and lipid concentrations in the earthworms did not correlate with any soil characteristics and no significant differences in earth: worm weight were observed between strategies. However, significantly lower glycogen and lipid concentrations were found in earthworms inhabiting conventional orchards, with a decrease of 45 and 63% compared to organic and abandoned orchards respectively. Earthworms from IPM orchards had intermediate values. This suggests that pesticide usage leads to the observed decrease of energy reserves in A. chlorotica. Thus the reduced insecticide use in IPM compared to conventional strategies, albeit significant, appears to be too small to result in pronounced effects on energy reserves in this earthworm species. (C) 2016 Elsevier Ltd. All rights reserved

    An exploratory study of energy reserves and biometry as potential tools for assessing the effects of pest management strategies on the earwig, Forficula auricularia L

    No full text
    International audienceApple orchards are heavily treated crops and some sprayed insecticides are recognized to have toxic effects on non-target arthropods. Earwigs are important natural enemies in pip-fruit orchards and contribute to the biological control of aphids. In addition, due to their ease of capture and identification, they are an interesting potential bioindicator of the possible detrimental effects of different orchard management strategies. In this study, we measured the energy reserves and some morphological traits of Forficula auricularia L. sampled in apple orchards under management strategies (organic versus integrated pest management (IPM)). We observed a significant decrease in mass (22 to 27%), inter-eye width (3%), and prothorax width (2 to 5%) in earwigs from IPM compared to organic orchards. Energy body reserves also confirmed these results with a significant decrease of 48% in glycogen and 25 to 42% in lipid content in earwigs from IPM compared to organic orchards. However, the protein content was approximately 70% higher in earwigs from IPM than in organic orchards. Earwigs sampled in IPM orchards may adapt to minimize the adverse toxic effects of pesticide treatments using a large number of strategies, which are reflected in changes to their energy reserves. These strategies could, in turn, influence the population dynamics of natural enemies and impair their role in the biological control of pests in apple orchards

    How lasting are the effects of pesticides on earwigs? A study based on energy metabolism, body weight and morphometry in two generations of Forficula auricularia from apple orchards

    No full text
    International audienceWidespread use of pesticides to control pests is the dominant system in conventional apple orchards. To avoid adverse side effects, there is a growing interest in promoting alternative methods including biological control based on the use of natural enemies. The European earwig Forficula auricularia L. (Dermaptera: Forficuidae) is an effective predator in apple orchards. Pesticide pressure has been shown to divert energy resources which could have a negative impact on life history traits. In this study we assessed (i) whether variations in pesticide exposure could differentially impact energy reserves, body weight and morphometric parameters of F. auricularia, and (ii) whether these effects persist into the next generation reared under optimal conditions. Individuals from the first generation were collected in late October from organic, IPM and conventional orchards. The next generation was obtained under a rearing program, in the absence of pesticide exposure. Earwigs collected from conventional orchards exhibited lower values for all morphometric parameters compared to those collected in organic orchards. However, a relaxed period without pesticide exposure (in autumn) appears to have allowed the females to recover their energy reserves to ensure reproduction and maternal care. Glycogen contents were the reserves that were more easily restored. However, probably due to the rearing conditions (food ad libitum), all the earwigs from the second generation exhibited higher body weights and energy reserves than their parents

    Nutritional state of the pollen beetle parasitoid Tersilochus heterocerus foraging in the field

    No full text
    International audienceMany laboratory studies have demonstrated that parasitoids of various species depend on sugar sources such as nectar or honeydew. However, studies about nectar acquisition by parasitoids foraging in the field are scarce. Tersilochus heterocerus Thomson is one of the more abundant and widespread parasitoids of the pollen beetle (Meligethes aeneus F.) but nothing is known about the nutritional ecology of this species. In this study we examined the nutritional state of T. heterocerus at the time of emergence and at various time periods throughout the season while foraging in the field using high-performance anion-exchange chromatography. We found that: (i) T. heterocerus emerge with relatively small amounts of sugar, composed mainly of trehalose, glucose and fructose; (ii) the first parasitoids caught just after they appeared in the field at the beginning of oilseed rape flowering had already consumed significant amounts of sugar reserves; and (iii) the total amount of sugar at the end of flowering was always significantly higher than the total amount of sugar at the beginning of flowering. This study provides valuable insights into the acquisition of sugar in the field by the parasitoid T. heterocerus and suggests that nectar acquisition takes place in the oilseed rape field or in the surrounding landscape

    Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism

    No full text
    In a rapidly changing environment, honeybee colonies are increasingly exposed to diverse sources of stress (e.g., new parasites, pesticides, climate warming), which represent a challenge to individual and social homeostasis. However, bee physiological responses to stress remain poorly understood. We therefore exposed bees specialised in different tasks (nurses, guards and foragers) to ancient (immune and heat stress) or historically more recent sources of stress (pesticides), and we determined changes in the expression of genes linked to behavioural maturation (vitellogenin – vg and juvenile hormone esterase – jhe) as well as in energetic metabolism (glycogen level, expression level of the receptor to the adipokinetic hormone – akhr, and endothermic performance). While acute exposure to sublethal doses of two pesticides did not affect vg and jhe expression, immune and heat challenges caused a decrease and increase in both genes, respectively, suggesting that bees had responded to ecologically relevant stressors. Since vg and jhe are expressed to a higher level in nurses than in foragers, it is reasonable to assume that an immune challenge stimulated behavioural maturation to decrease potential contamination risk and that a heat challenge promoted a nurse profile for brood thermoregulation. All behavioural castes responded in the same way. Though endothermic performances did not change upon stress exposure, the akhr level dropped in immune and heat-challenged individuals. Similarly, the abdomen glycogen level tended to decline in immune-challenged bees. Altogether, these results suggest that bee responses are stress specific and adaptive but that they tend to entail a reduction of energetic metabolism that needs to be studied on a longer timescale

    Does wastewater treatment plant upgrading with activated carbon result in an improvement of fish health?

    No full text
    International audienceIn the present study, the efficiency of a wastewater treatment plant (WWTP) upgraded with a powdered activated carbon unit for the reduction of micropollutants and the related advantages for fish health have been analyzed by means of different biomarkers, i.e. histopathological investigations, analyses of glycogen content and stress proteins, as well as by chemical analyses in different matrices. Comparative analyses were conducted prior and subsequent to the installation of the additional purification unit. Chemical analyses revealed a significant reduction of several pharmaceuticals, including diclofenac, carba-mazepine and metoprolol, in samples of effluent and surface water downstream of the WWTP after its upgrade. In addition, diminished concentrations of diclofenac and PFOS were detected in tissues of analyzed fish. Histopathological investigations of fish liver, gills, and kidney revealed improved tissue integrity in fish after improved wastewater treatment. In parallel, biochemical measurements of glycogen revealed increased energy resources in fish liver and, furthermore, hsp70 levels in livers of exposed rainbow trout and in kidneys of exposed brown trout were lower after than before the WWTP upgrade. In summary, additional treatment with powdered activated carbon led to a reduction of potentially hazardous chemicals in the effluent and the adjacent river and, consequently, to an improvement of fish health in the receiving water course
    corecore